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1 Optimal control

1.1 Ordinary differential equations and control dynamics

1. A brief review on ordinary differential equations. The time evolution of
a system, whose state is described by a finite number of parameters, can be usually
modeled by an O.D.E.

z(t) = f(xz(t)), a.e. t € (0,400,
(1.1)

where
e z:[0,+00) — R" is the state variable depended on time t;
e f:R" — R"is the dynamics;
e 1, is the initial state.

Definition 1.1 (Absolutely continuous) A map x : [a,b] — R™ is absolutely contin-
uwous if for every €,0 > 0 such that whenever a finite sequence of pairwise disjoint
sub-intervals (s, tx) C [a,b] for k =1,2,..n satisfies

n
Z |tk—8k| S (5
k=1

then it holds

> la(te) — (k)] < .

Denote by
AC([a,b], R") = {x:]a,b] - R™ | x is absolutely continuous} .

Notice that every Lipschitz function x : [a,b] — R™ is in AC([a,b], R"). However,
the converse of this statement is false in general. Indeed, the followings hold:

Lemma 1.2 For any z(-) € AC([a,b], R"), it holds that it derivative & is almost
everywhere defined on [a,b] and

x(t) = z(to) + /tj(s) ds  for all ty,t € [a,b].

to
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Conversely, given a function g € L'([a,b],R"), the function y : [a,b] — R™ which is
defined by

y(t) = yla)+ /t g(s) ds  forallt € [a,b]
belongs to AC([a,b], R") and
y(t) = g(t) for a.e. t € [a,b)].

Roughly speaking the lemma establishes that a map is absolutely continuous if and
only if it coincides with the integral of its derivative. Hence, one could provide an
alternative definition for absolutely continuous functions.

Definition 1.3 (Absolutely continuous) A map z : [a,b] — R™ is absolutely contin-
uous if and only if x is differential almost everywhere on |a,b] and

z(t) = x(a)—l—/ x(s) ds.

In general, the continuity and the almost everywhere differentiability are not suffi-
cient to guarantee the absolute continuity. Indeed, it is well-known that one can

Problem 1. Construct a (uniformly) continuous and strictly increasing function
2 : |a,b] = R such that z is differentiable and equal to zero almost everywhere.

b
Thus, z(b) —z(a) > 0= / %(s) ds and it yields that z is not absolutely continuous.

Definition 1.4 (Carathéodory solution) Given a vector field f : R* — R", a
map x : [a,b] — R"™ is a Carathéodory solution to the ordinary differential equation

on la,b] if z(-) is absolutely continuous and

z(t) = z(a) —|—/ f(z(s)) ds  forallt € [a,b].

It is clear that if x(-) is a Carathéodory solution of the ODE (1.1)) then all a < t; <
to < b, it holds

w(ts) = a(ty) + / " fla(s)) ds.

1
In particular, it yields the semigroup property

x(t+s) = x(t) ox(s) foralla <s,t<s+t<b

where z(t) o z(s) is the value of the solution of the ODE (1.1)) with initial data x(s)
at time ¢.



Theorem 1.5 (Existence result) Assume that the dynamics f is uniformly Lips-
chitz, i.e.,
1f () = f@)l < Ly-lly—=l  forallz,y € R"

for some constant Ly > 0. For any initial data o € R", the ODE admits a
Carathéodory solution.

Let us now introduce an useful lemma which allows to derive the stability result for
the ODE (1.1)).

Lemma 1.6 (Gronwall’s inequality) Let z : [0,T] — [0, +00) be an absolutely con-
tinuously function such that

2(t) < alt)-z(t)+ 5(t) for a.e. t € [0,T7].

and z(0) = zo. Then it holds
t
2(t) = z-eloo®) ds +/ B(s) - els o g
0

As a consequence of the above lemma, we have the following stability results of the

ODE (T1).

Proposition 1.6.1 Under the Lipschitz continuity assumption on f in theorem

the followings hold:

(i). (Boundedness) For any given initial data xo, let y™ (t) be the solution of (1.1]).
Then

ly™ @1 < lwoll + [1f(zo)ll - €. (1.2)
(i1) (Stability) Given any x1,x9 € R, it holds
ly™(t) —y™ @) < ™' flaz — (1.3)
for allt > 0. In particular, the ODE admits a unique solution.

Proof. (i). For any ¢ > 0, it holds

%Hym(t)—xoll < @I < [l (o)l + Ly - lly™ (8) — woll-

Thus, the Gronwall’s inequality implies that

oLrt

Ly

ly* () = ol < [[f (o)l -

and this yields ((1.2)

Lyt

Iyl < llzoll + 17 )l -
f



(ii). Similarly, one estimates

%lly’”(t)—y’“(t)ll < @™ @) = fy @I < Ly - ly™ (@) —y™ ()]

and the Gronwall’s inequality yields ((1.3)). O
The first order tangent vector. Let z(¢) be the solution of the ODE

Consider a family of nearby solutions, says ¢t — x.(t). Assume that a given time
t = 0, one has
(0) —2(0
v = lim 2@ =20
e—0 g

Proposition 1.6.2 In addition to the uniformly Lipschitz continuous on f, we as-
sume that f is also continuously differentiable. Then the first order tangent vector

Y v (t) — x(t)
i) =ty 2020

is well defined for all t € [0, T]. Morever, v(t) is the solution of the affine ODE
o(t) = Df(x(t)) - v(t), v(0) = v. (1.4)
Using the Laudau notation, we can write
r.(t) = z(t) +e-v(t) + o(e)

where o(¢) denotes an infinitesimal of higher order with respect to €. Therefore, one
can formally write

Te(t) = @(t) +e-0(t)+o(e) = flae(t)) = @(t)+ Df(x(t)) - ev(t) + o(e).
Adjoint system. It is useful to consider the adjoint system of
p(t) = —p)Df(z(1)) (1.5)

where p(t) is a row vector. A direct computation yields

S () o] = Pl olt) +plt) - 0(t)
= —p(t) - Df(t))u(t) + p(t)Df (x(t))o(t) = 0.

This implies that then the product p(t) - v(¢) is constant in time.
2. Control systems. In some cases, the system can be in influenced also by
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the external input of a controller. An appropriate model is then provided by a
control system, having the form

(1.6)

Here xq € R” is the initial state and
o f:R"xU — R" is the dynamics of the control system
e U C R™ is the control set

e u:[0,4+00[— U is a control function.

Remark. If we set
Fx) = f(x,U) = {f(z,u) |ueU},
then the control system @ can be rewritten as an differential inclusion
t € F(x), z(0) = xo.
There are two types of control:

o If u = w(t) is assigned as a function of time, we say that u is an open-loop
control.

o If u = u(x) is assigned as a functions of state variable u, we say that u is a
closed-loop (feedback) control,

Let us first consider the open-loop controls. We will write

f1($,u) xl(t)
f(z,u) = : and x(t) = :
fa(2,u) z" ()

The set of admissible controls is denoted by

Uga := {u: [0, +00[— U | u is measurable }, (1.7)

we will also write that

o (£)

Differently from ODE (|1.1]), a solution of the control system (1.6) depends on initial
state xo and the choice of admissible control w.
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Definition 1.1 Given any o € R" and u € U,q, a solution of @ denoted by
y ot (+) is called a trajectory of (1.6) starting from xy associated with the control u.

We shall assume that our control system satisfies the following standard hypotheses:

STANDARD HYPOTHESES (F)
(F1). The control set U is compact.

(F2). The function f is continuous. Moreover, there exists a constant K; > 0 such
that
|f(y,u) = f(z,u)| < Ly |ly —z|, foralz,yeR" uel.

The following holds:

Theorem 1.7 Under assumption (F), given any initial data xo and admissible con-
trol u € U,q, the ODE @ admits a unique absolute continuous solution denote by
yro" such that

Yy (t) = xo +/0 f(yo"(s),u(s)) ds for allt € [0,+00).

Moreover, the followings hold:
(i) (Boundedness) For any xo € R™ and t > 0,

elrt — 1
[yt @) < ™" aol| + ——— - M
Ly

with M = max,ey |f(0,u)].

(i1) (Stability) For any x1,x2 € R™ and t > 0, the distance between y™"(t) and
yr(t) L
ly™ () =y O < e - [lay — o]

Let’s introduce the cost function P : R" x U,; x AC(]0, 00), R™) — R which depends
on an initial data g € R™ and an admissible control u € U,q.

Optimization problem: Our goal is to seek for an optimal control u* € U,y
which minimizes the cost function among all admissible controls, i.e.,

P |:£U07 U*a ymo,u*} < P [3’)0, u, y$07u] u € uad .

The problem of
Minimizingyey,, P[ro,u] subject to the control system (1.6)) .

is called an optimal control problem.



1.2 Optimal control problems.
1.2.1 Standard problems

1. The minimum time problem. The aim of this problem is to minimize the
amount of time for the system to reach a given target set 7 which is closed subset
of R™. More precisely, for a fixed initial data xy € R™\T, denote by

O(xog,u) = min{t >0 | y™* €T}

Of course, 0(xg,u) is in [0, +00], and @(zo, u) is the time taken for the trajectory
y™" to reach the target 7T, provided 0(xg,u) < +00. The minimum time T(xq) to
reach the target T for xg is defined by

T(zg) = inf 6O(x,u). (1.8)

uEUyq

In general, T'(zg) can be +o0, i.e., the point xy can not reach to the target 7 from
the dynamics (1.6]). For a fixed time ¢ > 0, denote by

R(t) = {zeR | T(x) <t}
the set of point can reach the target before time ¢. It is important to consider the

reachable set
R = [JR(®)

>0
the set of point which can reach to the target in finite time.
Some basic questions:
e (Controllability) Given a point xzy € R™\T, does xy belong to R?

e (Existence and uniquiness) Given zy € R, is there an admissible control
u* such that
O(xo,u) = T(xp).

If the above equality hold, u* is called an optimal control steering x, to the
target 7 in a minimum amount of time. Is u* unique?

e (Necessary conditions) Can we construct optimal controls by deriving a set
of necessary conditions and compute T'?

e (Regularity theory) Study the regularity properties of the minimum time
function 7'

Let us consider a simple example.

Example 1: (Rocket railroad car) Imagine a railroad car powered by rocket engines
on each side. We introduce the variables



e x(t) is the position of the rocket railroad car on the train track at time ¢
e v(t) is the velocity of the rocket rail road car at time ¢
e [(t) is the force from the rocket engines at time ¢

where —1 < F(t) < 1 and the sign of F(t) depends on which engine is firing.

Our goal: is to construct F(-) in order to drive the rocket railroad car to the
origin 0 with zero velocity in a minimum amount of time.

Mathematical model: Assuming that the rocket railroad car has mass m, the
motion of law is

—= = u(t) (1.9)

where u(-) is understood as a control function. For simplicity, we will also assume
that m = 1. The motion equation of the rocket car is

(1.10)
z(0) = o and v(0) =y
where u(-) € U = [—1, 1], zo is the position of the rocket railroad car at time 0 and
vg is the velocity of the rocket railroad car at xy. By setting
x(t) 0 1 0
z(t) = , A= and b= (1.11)
v(t) 0 0 1
we can rewrite (1.10]) as the first order control system:
2(t) = A-z(t) +u(t)-b
(1.12)

2(0) = 2z = (zo,v0)T.

The cost function is o)
20,U
Plzg,u(-)] = / lds=40
0

where 6(z,u) is the first time such that z(6) = (0,0)7.
The goal is to find u* € U,4 such that

Plzo,u™(-)] < Plzo,u(-)], for all u € Uyg.

In this case, P[z,u*(-)] = T(z) is the minimum time needed to stear z to (0,0)7.

Problem 2. Prove that the set R(t) is convex and compact.



Problem 3. Identify the reachable set R .
Problem 4. Given a point x € R?\{0}, is there a unique optimal control?

Problem 5. Compute the minimum time function T'.

2. The finite time horizon problem: Bolza and Mayer problems. Given
o € R™ and control u € U,4, consider the cost functional

Plg,u, T] = / Fu(t), g™ (1)) dt + g(y™(T)) (1.13)

where
e 7: U X R" — R is the running cost;
e ¢:R" — R is the terminal cost;
e T'is the terminal time.

The problem of
minimizing, o, . Plzo,u,T] subjects to the system (1.6 (BP)

is called a Bolza problem.

In particular, if the running cost » = 0 then (BP) becomes
minimizing, o, - g(y*™"(1)) subjects to the system ([1.6) (MP)

and is called a Mayer problem.
Problem 6. Can one rewrite a Bolza problem as a Mayer problem?

Goal: For an given initial data xg and a terminal time T > 0, a natural question
is to seek for an optimal control u* which minimizes the cost function Plxg,u,T).

If an optimal control u* does exist, the value function is denoted by

V(T,z9) = inf Plzo,u,T] = Plxo,u",T].
u€EUq
Example 2: (A classical problem in calculus of variations) Consider a linear control
system
(t) = u(t) ae te|0,T]
(1.14)



where z : [0, +00[— R"™ and u(-) € Uy,q. Here, the admissible control U2, is denoted
by
ad - {u O T] — R" ’ u € Lloc([oaT]aRn)}' (115>

In this case, the set of admissible trajectories is
Arg = {y(-) € AC([0,T],R") | y(0) = z}

which is the set of all absolutely continuous functions defined on the interval [0, 7]
with initial state z.

Let us now introduce
L:R" >RxR" and ¢g:R" =R (1.16)

are respectively the continuous running cost (Lagrangian) and the continuous ter-
minal cost. A classical problem in calculus of variations

Minimize,qr /0 L(y™®(t),u(t)) dt + g(y"*(T)) . (1.17)

Example 3: (Minimal surfaces of revolution) Consider in the space R?® the

two circles
z2+y2:R1 22—|—y2:R2
and (1.18)
r = a1 T = a9

where a; < ay. Given Let Ayq be the set of functions ¢ : [ay, as] — R3 such that

x

()= 0 | where r(-) : [a1,as] — R* is smooth and satisfies that r(a;) = Ry
r(z)

and r(ay) = Re. For each £ € A,4, we denote by

Se = {(:v,y, 2)" ‘ a <x<ag 2’ +yt= r(x)} (1.19)

the surface of revolution generated by {. The area of S¢ is
a2
Area(Se) = 27T/ r(z)\/r'(z)?> + 1 dx. (1.20)
ai

Our goal: Finding £*(-) € A,q such that
Area(Se+) < Area(Se) for all {() € Aga- (1.21)

We can reformulate the problem into a control problem. Indeed, we consider the
constant control system

(1.22)



where u(-) € U,q which is denoted by
a2z
Upg = {u € C'(Jay, as],RT) ‘ / u(s)ds = Ry — Rl}. (1.23)
ai

The payoff functional is
R>
Plu(")] = 27r/ r(s)v/ 14 u?(s) ds. (1.24)
Ry

The goal is to find u*(-) € U,q such that

Plu*(+)] < Plu(-)] for all u € Uyg. (1.25)

3. The infinite horizon problem with discount. Given zy € R™ and control
u € Uyq, consider the infinite horizon cost functional with discount

J[zo,u] = /0+00 e M Lyt (), u(t)) dt (1.26)

where A > 0 is a given discount rate and L is the running cost fulfills the following
assumption:

(L1) The function L : R® x U — R continuous bounded and continuous, more
precisely there exist a modulus wy(-) and a constant My, such that

|L(z,u) = L(y,u)] < wr(lz—yl) and  [L(z,u)] < My
for all z,y € R" and u € U.

Our goal is seek for an optimal control u* which minimizes the cost functional. If
u* does exists, one needs to calculate the value function

V(zg) = minimizeyey,, Jx,u].

Example 4. (Optimal harvesting of renewable natural resources) Denote by x(t)
the size of fish population at time ¢, subject to harvesting. This evolves according

to the ODE
t = ax(M — z) — bxu, u(t) € [0, Umax] -
Here i(t) = ZLx(t) is the derivative with respect to time ¢ and
e M describes the maximum population sustained by the habitat;

e « is is a reproduction rate;

e b measures the efficiency the harvesting effort;
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e The control u(t) accounts for the fishing effort, while the product bz (t)u(t) is
the actual catch at time ¢.

We consider the optimal harvesting problem in infinite time horizon, exponentially
discounted:

mazximize : / e " [px(t) — cu(t)] dt
0

where p is the market price of fish and c¢ is the unitary cost of the harvesting effort.

Main questions:

o What is the best harvesting strateqy? More precisely, how should the fishing
effort w = u(x) depend on the current population size x, in order to achieve
the maximum profit, over time?

o Study what happens to the population size as t — oo, when this optimal har-
vesting policy is implemented, How does this limit depend on the coefficients
o,y and c?

Problem 8. Can one remove some of the constants by rescaling variables. Namely,
assume
y = avz, T = cot and v o= C3u.

Rewrite the ODFE in terms of the new variables. Choose the constants ¢, cq,c3 S0
that the new equations become

d
Ey = y(l - y) —yv, (NS [Oavmax] = [07 C3umax] .

Basing on the reformulated problem, one needs to

Problem 9. Write an ODEFE satisfied by the value function

V(y) = [mazimum payoff that can be achieved when the initial population is x(0) = y]
and solves it.

1.2.2 Non-standard problems

1. A producer vs. consumer games. Consider a game between a producer and
a consumer. In this model, the following variables are all functions of time ¢t > 0

e R = amount of product still unsold, held in reserve,

e p = unit price,
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e u; = production rate,
e 1y = consumption rate.

The evolution equations are

R = Uy — Uy,

p = —ln(%)p.

The first equation simply says that the amount of product in stock changes depend-
ing of the difference between production and consumption. By the second equation,
there is a level Ry of reserves which is considered “appropriate”. If the reserves
fall below Ry, shortages are predicted and the price increases. If the reserves in-
crease above Ry, a glut is expected and the price decreases The payoff functionals,
in infinite time horizon, are

(1.27)

Ji = /OO e puy — c(uy)] dt,
0 (1.28)

Jy = / e " o(ug) — pusg] dt .
0

What is the optimal solution to the problem? This question leads to the concept of
Nash equilibrium and a study of system of PDEs.

2. Optimal debt management. An accurate description of the debt structure
would require a knowledge of the size of the various loans, the interest rate charged
on each loan, and the expiration date of each loan. To simply the models, let us
denote by

e x(t) = debt size

e u(t) € [0,1] = payment rate, as a fraction of the income

e [(u) = = cost to the borrower for implementing the control
e 3 = bankruptcy cost to the borrower.

Given initial debt Z, the borrower seeks to minimize
Tp
Ju,z] = FE {/ e ""L(u(t))dt + Be "5
0

= [cost of servicing the debt] 4 [bankruptcy cost].

When an investor buy a bond of unit nominal value at time ¢ = 0, he receives a
stream of payments for all future times. The repayment rate is

Y(t) = (A7)
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e A\ = the rate at which the borrower pays back the principal

e r = the interest payed on bonds.
If bankruptcy does not occur, the total payoff the lender, exponentially discounted
in time is -
U = / et r 4+ NeMdt = 1.
0
However, if the borrower goes bankrupt at time T < +00, a lender recover
6(x(Tp)) € [0,1) = fraction of his outstanding capital .
The payoff to an investor will be

Tp
U = / (r 4 N)e UVt 4 e~ HNTB(1(Tg))) .
0

If # < 1then ¥ < 1. To offset this possible loss, the investor buys a bond at the
discounted price p € [0, 1]. Assuming that lenders are risk-neutral, we have

Tp
p = E[/ (r 4 X)e UVt 4 e*(”“)TBG(x(TB)))} :
0
Thus, the optimization problem for the borrower is
Tp
Minimize J[u,z] = { / e " L(u(t))dt + B emﬂ
0

subject to

A+7) -2 —u(t)
p(t)

() = —X-z(t) +

where the discounted bond price is
T
p(t) = E l/ A+ r)e” M= gr 4 e(”’\)(TBt)Q(J;(TB)))]
t

and T’p is random bankruptcy time.

Model 1: Given p(x) the instantaneous bankruptcy risk, Tz is defined as
Prob {Tp € [t,t+¢] | Tp >t} = p(x(t))-c+o(e).
and the yearly income is fixed.

Model 2: The yearly income Y (t) of the borrower is governed by a stochastic
evolution equation
dY (t) = pY(t)dt+ oY (t)dW.
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There is not bankruptcy risk p(z) but the borrower can declare bankruptcy at any
time he likes.

3. Optimal decision problem on traffic lows. Consider n groups of drivers
with different origins and destinations, and different costs. Drivers in the k-th group
depart from Ay and arrive to Agp) can use different path I'y,T's, ... to reach to
destination. More precisely, let us denote by

A
d(1)

e (G, = total number of drivers in the group k for k = 1,2, ..., n;

I', = viable path to reach destination, for p = 1,2, ...N;

t — uy,(t) = departure rate of k-drivers traveling along the path I'y;

The set of departure rates {uy,} is is admissible if

upp(t) > 0, Z/ upp(t) dt = G, k=1,2,..,n.
P —0o0

For any k € {1,2,...,n}, a driver 8 in the k-th group is
or(r(8)) + ¥ (r*(8))
where 7¢(3) and 7¢(3) are departure and arrival time of driver 3, respectively.

Goal:  Seeks for a globally optimal admissible family {uy,} of departure rates
which minimizes the sum of the total costs of all drivers

J@) = 3 / (or(t) + (o (1)) dt.
k,p
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1.3 Existence of optimal open-loop control

This subsection aims to establish an existence result of optimal open-loop control a
classical problem in calculus of variation. Given (7', %) € [0, +oo[xR", we wants to

Minimize, g Plu] = /0 L(z(t),u(t)) dt + g(x(T)) (P)

subject to

u(t) a.e. te|0,T]

z(0) = z.
Here, we shall assume that the following standard assumptions

(L1) For any R > 0, there exists Lr > 0 such that

|L(y,u) — L(z,u)| < Lr- |y — x|, forallueR" z,ye B(0,R).

1
(L2) There exists [ > 0 and a function ¢ : [0, co[— [0, 00] with lim (r)
and such that

r—oo T

L(x,u) > {(|lu]) =4y, forallzeR" ueR"

(L3) For every z, the function L(z,-) is convex.

Theorem 1.1 Under the standard assumptions (L1)-(L3), assume that g is locally

Lipschitz and bounded below the for every & € R". Then (P) admits an bounded
optimal control u*(-), i.e.,

in Plu(-)] = Plu*(-)].
Iin Plu(-)] [w” ()]
Proof. It is divided into several steps:

1. Let us set

—00 < A := inf

Plu] < + o0
ueelr,

and consider a sequence of control functions uy(-) € UL, such that limy_ o, Plug] = .
Thus, there exists ky > 0 such that

Plug] < A +1 for all £ > kg
and (L2) yields

T
A1 > / O(ug(t))dt — 6T + ienkf g(z).
0 rER™
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Since g is bounded below, one has
T
/ (u()dt < A+ 1467~ inf g(x) = Cy < +oo
0 zeR?

l
for all k£ > kg. On the other hand recalling that lim @ = 400, we have

r—00 T

lr)y > r for all » > M.

for some My > 0. Thus, it holds
T
urllLigory < MO'T+/ lug(t))dt < My-T +Cy = Ch.
0

for any k > k.
2. Now, let v € L'([0, T],R"™) be such that ||ul[z: < C). For any «a > 0, we define
u(s) it u(s)] <«
u(s) =
0 it Ju(s)] > a.
Observe that
1y (s)], [y™(s)| < Ry := |Z|+Cy  forall s €[0,7],

by setting I, = {s € [0,T] | |u(s)| > a}, we estimate
Pluq(-)] = Plu(-)]

= /0 L(y™" (s),u(s)) — L(y™"(s), u(s))ds + g(y™"" (T)) — g(y™"(T))

< (Lr,T + gg,) - /0 [u®(s) — u(s)|ds -l—/ L(y™"(s),0) — L(y™"(s), u(s))ds

Io

< (LaT+gm) - / fu(s)[ds + (K, + o) - 1] / ((Ju(s)))ds

where gp, is a Lipschitz constant of g in B(0, Ry) and Kg, = supj,<p, L(y,0). If
a > 1 then

Plua()] = Plu()] < Tr- [ fuls)lds — [ £(Ju(s)])ds

I I

with 'y := Lg, T+ ggr, + Kg, + {o. Again, from (L2), there exists ar > 1 such that
0(r) > Tp -7 for all r > ap. Thus,

Pl ()] = Plu(-)] < 0.
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3. For every k > kg, we define

uls) i Ju(s)| < ar
vk(s) = w"(s) = for all s € [0, 7).
0 it [u(s)| > a
We then have
Sup ||Uk||L°°([0,T}) < ar and lim Ploy] = A
k>ko k—00

Since the sequence {vg}r>k, is bounded in L*°([0,7],R™), one can construct a
subsequence {wg}i>1 € {vg}tr>k, such that {wg}r>1 converges weakly to w in
L*>([0,T],R™), i.e.,

T T
lim wi(s) - p(s)ds = / w(s) - p(s)ds
k—oo 0 0
for all p € L!([0,T],R"). In particular, by choosing ¢ = (1,...,1), we obtain that
y©™r converges uniformly to y*® and this also implies

lim g(y™"*(T)) = g(y™"(T)).

k—o0

Recalling (L1), we have

lim inf (Puwg(-)] — P@(-)]) = limini /0 L(y™ (s), we(s)) — L™ (s), W(s))ds

k—oo k—o0

k—o0

> timint [ L7 (5) =77 (6) | (LT (5) wa9) = L5, () s

— liminf /0 Ly (s), we(s)) — Ly (s), W(s))ds.

k—o00

Since L(z,-) is convex and wy — w, it holds

lim inf /0 L™ (s), w(s)) — L(y™(s), (s))ds < 0.

k—o0

and this yields
Plw(-)] < liminf Plwg(-)] = A

k—o0

In particular, u* = w is an bounded optimal control of (P) and the proof is complete.
L]
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1.4 Pontryagin maximum principle

In this subsection, we wants to derive some necessary conditions for optimality for
the following Mayer problem with free terminal point

max ¢ (z(T)) (P)

UEUG

subjects to
w(t) = fl(t),ud)), z(0) = 0.

For the simplicity, we will assume that ¢ and f are smooth.

Theorem 1.8 Let t — u*(t) be an optimal control and x*(t) be the corresponding
optimal trajectory for (P). Denote by p*(t) the solution of the adjoint equation

prt) = —p(t) - Dof(a*(t),w(t))  with — p"(T) = Dy(z*(T)).

Then the following holds

pr(t) - f(z*(t),w (1)) = max {p*(t)- f(z*(t),w)}  ae t€][0,T]

wel

Proof. The proof is divided into several steps:

1. (Needle variation) For a fixed 7 > 0 and w € U, we consider the needle
variation u, € U,y such that

u*(7) if T ¢ [r—e,T]

w if TE[T—¢,T]
for e sufficiently small. The perturbed strategy is denote by
z(t) = y*o=(t) for all ¢ € [0, 7.
By the optimality condition, one has that
(@™ (T)) > Y(x(T)) for all € > 0.
Thus, if lim._, 22020 — 4(T) then

S

£—00 IS

2. Assume that u* is continuous at time ¢t = 7. We claim that
z.(7) — (7T
) - ()
e—0+ £

= [@(7),w)) = f(a"(7),u"(7))) = (7). (1.29)
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Since u*(t) = uc(t) for all t € [0,7 — €], it holds that z*(7 — ¢) = z.(7 — ¢). Using
the smoothness of f and continuity of u* at 7, one can write

nn) =0 = [ fadsw) - 1) 0 (9)ds
= [ Faa(s)w) — Fat(s)out (1)ds + ofe)

T—E&

= - [f(ze(r), w) = f(z*(7),u"(7))] + o(¢)

and this yields ((1.29)). Since u. = u* on the remaining interval [r, T, the evolution
of the tangent vector

o(t) = Tim T =T

for all t € [7, T
e—0+ g

governed by the linear equation
0(t) = Daf (z7(t),u"(t)) - v(t),
Recalling that p*(t) is the solution of the adjoint equation
pr(t) = —p'(t) Dof(2*(t),u’(t))  with — p*(T) = Di(2*(T)),

we then have
—[p*(t)-v(t)] = 0  forallte|r,T].

In particular,

and this implies that
p(7) - f(z*(7),u(7)) = max {p"(t) - f(z"(t), w)}. (1.30)
3. One observes that
ze(r) =2 (1) = e [f(z(7),w) — f(2"(7), u"(7))] + o(€)

holds if 7 is the Lebesgue point of u*, i.e.,

1 T4+
lim — - “(s) — _ 0.
m o /T_(s *(s) — w*(r)|ds = 0

6—0+

Thus, ((1.30) holds for every Lebesgue points of u*. Thus, the proof is complete by
the Lebesgue differentiation theorem. O
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Relying on the Maximum Principle, the computation of the optimal control requires
two steps:

(i) Given z,p, find u*(z,p) such that

u*(w,p) = argmaxp- f(z,w);
we

(ii). Solve the two-point boundary value problem

& = f(z,u(z,p)) z(0) = o
with

p = —p-D.f(z,u*(z,p)) p(T) = Vi(z(T)).

In general, it is not so easy to solve (i)-(ii) since u* is nonlinear and may be discon-
tinuous of multivalued.

Example 1.(linear pendulum) Consider a linearized pendulum with unit mass.
For every t > 0, let us denote by

e ¢(t) = the position of the pendulum at time ¢;
e u(t) € [-1,1] = an external force at time t.
The equation of motion is
G(t) +q(t) = u(t), q(0) = 4(0) = 0. (1.31)

Goak: Maximize ¢(2), the terminal displacement at time 7' = 2.

Let’s rewrite ((1.31)) by setting
o(t) = | f.u) = (1.32)

We thus seek for u* which

max x1(2) subject to  &(t) = f(z,u).
ue

0 1
-1 0

i = (& g)ee

One computes that D, f(z,u) = ( ) . The linearized equation for a tangent

vector v = (vy,v9)7 is



and the corresponding adjoint vector p = (p1, p2) satisfies

1
= () o veeE) = 0o,
Solving backward the above ODE, we get
p(t) = (cos(2—t),sin(2 —t)) for all ¢ € [0, 2].
For every t € [0, 7], we choose u*(t) such that

u*(t) € arg maxl] {cos(2 — t)xo(t) +sin(2 — t)(—x1(t) + w)}.

we[—1,

It is clear that
u*(t) = sign(sin(7 —1t)).

O

Problem 11(Linear-quadratic optimal control). Consider the linear control
problem
& = Ax+ Bu, z(0) = z.

where v € R", u € R™, A € M"" and B € M"™ . Given two symmetric matrice
Q € M™" and R € M™ ™  can one write a necessary condition for the optimal
control problem

T
. T T
min ' Qx +u Ru| dt.
u(')EAad /(]v |: Q i|

The above theorem can be extended to the more optimization problem

UEULq

max {L(t,x(t),u(t))dt + /O Tw(x(T))} (P1)

subjects to

Theorem 1.9 Let t — u*(t) be an optimal control and x*(t) be the corresponding
optimal trajectory for (P1). Denote by p*(t) the solution of the adjoint equation

pr(t) = —p'(t)- Dof(2"(t),u"(t)) = DL(t, 2" (t), u*(t), p*(T) = D(a*(T)).
Then the following holds for all most every t € [0,T]
pr(t)- f(z*(t), u'(t)) + L(t, 27(t), u"(t)) = max {p*(t) f(z*(t), w)+L(t, 2" (t),w)}.

wel

22



Proof. The problem (P1) can be written as the folliwng Mayer problem

max/o U(z(T)) (P1)

UEUL g

subjects to
yt) = F(t,x(t),u(t)),  y(0) = (20,0).
with y(t) € R"*! and
F(ta l’,U) = (f(ta x,u), L(ta l’,U)), \Ij(yla s 7yn+1) = ¢(y1> cee 7yn) + Yn+1-

Then one can apply the previous Theorem. O

1.5 Dynamic programming principle

In this section, we will introduce an approach to seek for an optimal feedback con-
trol. This will lead to the first order nonlinear partial differential equations of the
corresponding value function. The basic tool in this approach is the Dynamic Pro-
gramming Principle. This principle express the intuitive idea that the minimum
cost is achieved if one behaves as follows:

e Let the control system evolve for a small amount of time € choosing an arbi-
trary control u and pay the corresponding cost J[zg, ul.

e Denote a new control uf by
ut(s) = u(s) for all s € [0,¢],

and uf(s) = u*(s) for all s < & where u*(s) is the best possible control to
minimize the cost function after time € > 0.

e One has that
Jlwo,u] > J(zo,u?).

Let’s recall our control system

z(t) = flx(t),u(t)), a.e. t € (0,400,
(CS)
z(0) = x.

The basic tool to prove this principle is the following semigroup property for the
solutions of system (CS).

Lemma 1.10 Under standard assumptions (F1)-(F2), for a given initial data x
and control u € Uy,g, it holds

y o (s 4 1) = YUt with oz, = y®(s)

for all s,t > 0.
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Proof. Recalling that f is uniformly Lipschitz, Theorem implies that the
system (CS) admits a unique solution y***(-) and has an integral formulation

y©rt) = zo+ /tf(ymo’"(s),U(S)) ds forall t > 0.
0
One can write
t+s
Yyt +s) = xo +/ fy™ (), u(r)) dr
S " t+s
= To+ / fly™ (1), u(r)) dr + / f* (s +7),u(s+ 7)) dr
0 s
_ Ts,Us i d
T2 +/0 fly (1), us(7)) dr

where we set
yoeis (1) = yU(s + 7) and us(t) = u(s+7)

and can use this by the uniqueness. O

Remark 1.11 The following properties of the admissible controls hold
(1) If u(-) € Uya then u(t + ) € Uyq for all t > 0;
(ii) For any uy € Uya, us(-) € Usq and time t > 0, the concatenated control

uq(s) for s € [0,¢),

u(s) =
us(8) for s € [t, +00)

belongs to U,g.

1. DPP for the minimum time function. Given a closed target set 7 C R¢
and initial data xg, the minimum time to reach 7 from xq is denoted by

T(xg) = inf {t>0|y™"eT}.

UEULq

Proposition 1.11.1 Under standard assumptions (F1)-(F2), for a given initial
data xq, the following holds

T(xg) = inf {s+T(y™"(s))} (1.33)

uEU,q

for all s € [0,Ty).
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Proof. 1. Given s > 0 and control u € U,4, we first show that
T(xg) < s+T(y™"(s)). (1.34)
Denote by z4 = y™"%(s). One has

T(xs) = inf {t>0]|y™"eT}.

VEULg

For any v € U,4, consider the concatenated control

u(7) for 7 € [0, s),
uy(T) =
v(s+7) for 7 € [s,+00) .

It is clear that u belongs to U,y. From lemma [1.10} it holds
Yy (s+ 1) = y*r(r) for all 7 > 0.
This implies that

S +T<Is) = s+ iIlf {t 2 0 | yws’” c ’T} — iIlf {t Z 0 | y:po,uU c 7'}
vEULg VEUg

and it yields (|1.34)).

2. To conclude the proof, we show that
T(xg) = s+T(y™"(s))- (1.35)

Assume that T'(zg) < +o00. By the definition, for any € > 0, the exists a control u.
such that the trajectory y*< reach the target 7 before time T'(z¢) 4. This implies
that
T(zo) +e > s+T(y*"(s))
and it yields
T(xg) +e > s+ inf T(y™"(s)).

UEULq

By letting e — 0%, we obtain (|1.35)) O
Corollary 1.12 Assuming that T' is a smooth function. We show that T is a solu-
tion to the different

H(z,Vu(z)) = 1  forallz € R"™\T (1.36)
with

H(z,p) = sup (—p, f(z,w)).

welU
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Proof. Indeed, fixed o € R*"\T, for any w € U we consider the constant control
us(s) = w  forall sel0,¢l
Let z. = y*"(g), we have
re = xo+e- f(ro,w) and T(xg) < e+T(x).

Thus,

and it yields
H(ZL’(),VT(.T())) S 1.

On the other hand, assume that x* is an optimal trajectory then
T(xg) = s+ T(z*(s)) for all s >0

and this implies that

The proof is complete. O

2. DPP for the Bolza problem. Given a running cost r : U x R” — R and
terminal cost g : R® — R. The value function of the Bolza problem with pay-off P

in ((1.13)) and control system (CS) is

UEULq

V(tzo) = inf / F(u(t), ™ (7)) dr + gy (1))

for all given initial data xy, € R™.

Proposition 1.12.1 Under standard assumptions (F1)-(F2), for a given initial
data xo € R™ and time t > 0, the following holds

V(t,zg) = inf {/OS r(u(r),y*"(1)) dr + V (t — s,ymo’“(s))} (1.37)

uEU, g
for all s € (0,1).

Proof. 1. For any given u € U,4, we show that
V(t,zg) < / r(u(r),y*" (1)) dr + V(t — s,y""(s)) . (1.38)
0

As in the previous proof, denote by z; = y™*(s). One has

Vie—sia) = af { [0 @) dr+ gl -9) |

VEULq
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For any v € U,4, consider the concatenated control

u(T) for 7 €0, s),
uy (1) =
v(s+T) for 7 € [s,+00) .

It is clear that @ belongs to Uyq. From lemma [I.10} it holds
Yy (s+ 1) = y*r(r) for all 7 >0

and
yrot (1) = yo(r) for all 7 € (0,1).

Thus,
| vt o) ar gt )
= [y [ ) dr e - s)

for all v € U,4. Therefore,

[ o) drs gl o)
= [ ) dr Ve =)

and it yields .

2. To complete the proof, we show that

V(t,xzg) > /OS r(u(r),y*" (1)) dT + V(t — s, y">"(s)) . (1.39)

For any given ¢ > 0, there exists a control u. € U,4 such that
t
V(t, o) +& > / r(ue(T), ™" (7)) dr + g(y™* (1))
0

> [t o) e [ ) s ) dr gl (- )

where z, = y*"(s). This implies that
Vit +e = [ (). g™ () dr + Vit = 5,0 (s)
0

> inf { /0 t_sr(v(T),ymo’v(T)) dr+g(y“’“(t—s))}

VEUL

and it yields [1.39] O
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Corollary 1.13 Assume that V' is smooth. Then V is the solution to
Vi+ H(x,V,V) = 0, V(0,20) = g(xo)

with
H({L‘,p) = Iur)lEHUl {T(I’,w) +p- f(x,w)}

Proof. I leave it for students. O

3. DPP for the infinite horizon problem. Given a running cost L : U xR" — R
and a discount rate A > 0, the value function of of the infinite time horizon problem
with a discount rate is

Viz) = inf {/Om ML (o (1), u(t) dt}.

u€EUyq
The following holds

Proposition 1.13.1 Under standard assumptions (F1)-(F2), for a given initial
data xog € R™ and any time t > 0. The value function V' satisfies

V(zg) = inf {/o e M L(y™(s), u(s))d8+e_’\'t-V(y”“’“(t))} . (1.40)

UEULq

Proof. Fix xo € R™ and time t > 0, for each admissible control u € U4, we have
Ploou] = [ e L(s) u(s) ds
tO 400
— /0 AL Ly (s), u(s)) ds—i—/ e L(y™"(s), u(s)) ds
t
t +oo
B / Ly (s), uls)) ds + e / N Ly (s), u(s)) ds
t ‘ +(§O
= / AL Ly (s), u(s)) ds + e M / e L(ymt’“(”')(s),u(t +5)) ds
0 0
where z; = y"(t). This implies that

Plzo,u] > /0 e L(y™"(s), u(s)) ds + e V(Y™ (t)

and it yields

V(zo) > intf { /0 t e~V [ (70 (s), u(s))ds—l—e_“-V(ymo’“(t))}.

uEULq

To complete the proof, we need to show that

V(zg) < inf {/0 e M Ly (s), u(s))ds+e_’\'t . V(yxo’“(t))} ) (1.41)

UEUL g
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For any u € U,q, we set x; = y™“(t). For every ¢ > 0, there exists an control u,
such that

400
Vi) +e > / NS L (e (s), ue(s)) ds.

Denote by
u(s) for 7 € [0,1),

us(s —t) for s € [t, +00).
By the definition, we have

Vizo) < /O e Lo (s), e (5))ds
= [ s s+ [ e L))
N / Ly (s), uls))ds + e /tme“’“‘”L@wov%(s),u5<s>>ds
- /Ot e Lyr(s), u(s))d8+6_’\'t-/0+oo e Ly ) u(s)) ds

= /0 e Ly™"(s), u(s))ds + e - [V(w,) +e] -

Taking ¢ — 0, we obtain that

t
Vi) < [ e Lo (s)uls)ds + e V(o)
0
for all u € U,q and it yields ((1.41) O
Corollary 1.14 Assume that V is smooth. Then V is the solution to

AV = H(z,V,V), V(0,20) = g(xo)

with
H(z,p) = min{r(z,w) +p- f(z,w)}

wel

Proof. For any constant admissible control a(-) = w € U, we have
¢
Vi) < [ e Lrn(shu)ds e Ve (o)
0
This implies that

V() + V(@) ) = [ V)], >~ Law),

Thus,
AWV(x) < IH€1(IJl {V(x)- f(z,w) + L(z,w)} = H(z,VV(x)).
The opposite site is trivial. O
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1.6 Recovering the optimal control from the value function

1. Infinite horizon problem. Let V be the value function of the optimization problem

V(z) = inf {/Om =ML (g0 (1), u(t)) dt}

uEULq

subject to the control system (CS). Assume that V' is in C', we show how to recover
the optimal control.

Given an initial data x(, the optimal control can be determined as follows:

1. For every control u, we introduce the function
t

BU(t) — / Ly (), uls)) ds+ e M V(o) forall £ > 0. (1.42)
0

It is clear that ®*() is a non-decreasing function, i.e.,
OU(t)) < D“(t) forall 0 <t <t5.

Indeed, we have
MR (t) - (L)) = V(Y™ (h)

to—1t1
‘(/‘ ‘f“-L@m“@1+$nxm+s»m;%&W%“”“““”) <o.
0

Moreover, u is an optimal control if and only if the function ®*(-) is constant. In
this case, we compute

0 = Lauy = e Lo, ut))

dt
= ATV (Y™t () e YV (g™ (1)) - fy™ (8),
and this implies that

A-VI(y™t(t) = Lly™" (1), u(t)) + VV (g™ (1)) - f(y™"(t)) - (1.43)
for a.e. t > 0.

2. Given any t > 0 and control w € U, let us consider

u(s) for s € 0,t),
V(T) =
w for 7 € [t, +00).

Recalling that the function ®"»(t) is monotone non-decreasing. This implies that

0 < Lam(y = ML [VV ) - Fr (D), vo(t))

dt
+ L(y®o" (t),w(t)) — X - V(y=o (¢ ))] for all ¢t > 0.
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In particular,

V(s (@) - Sy (0 + L (0, w(t) = A- V™ (0) = 0.

Since
FoE) = g = a and (D) = v,
we have

L(zg,w) + VV(xg) - f(zg,w) = X-V(zg) > 0. (1.44)

3. From ((1.43)) and (1.44]), one obtain that
Lwz, w) + VV(@q) - f(ag,w) = Lz, u(t)) + VV () - fxg,uf))

Therefore, if (u*(t),z*(t)) be an optimal control and corresponding optimal trajec-
tory pair then the followings hold

u'(t) = argmin {L(z"(t),w) + VV (2 (t), w) - f(2"(t), w)}
and in particular
u*(0) = arggﬂneig {L(xg,w) + VV(xg,w) - f(zo,w)} .

Therefore, if the minimum is attained at a unique point, this uniquely determines
the optimal control, in feedback form the function

u*(z) = argmilr} {L(z,w)+ VV(z,w)- f(z,w)}
we
4. Let’s introduction the Hamilton function
H(z.p) = min {L(z,w)+Vp- f(z,0)}.

If the value function V is differentiable at z then V solves the Hamilton-Jacobi
equation
A V() = H(z,VV(x))

at the point Z. O

2 Viscosity solutions

2.1 The method of characteristics

Given an open set 2 C R", consider the first order PDEs

H(z,u,Vu) = 0 for all x € R™

u(z) = g(x) x € 0N
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Assume that H and g is C! function, we want to construct a solution in a neighbor-
hood of 02 by the classical method of characteristics, i.e., determining the value of
u along a suitable curve s — z(s) starting from 9 by solving a suitable system of
ODEs. Let’s introduce the variable

p(x) = Vu(r) = (Ugy,Usys .-, Un,),
we seek a system of ODEs describing how u and p change along x(-). We compute

d a .
au(ﬂc(t» = ; Uy, (2(t)) - 2i(t)

and
%pj(aﬁ(t)) = meimj(x(t))ﬁci(t) = Zuxixj(m(t))ﬁci(t)-

for all j € {1,2,...,n}. On the other hand, differentiating (4.1) w.r.t z;, one gets

OH  0H —~ OH
— + Uy, —Ugp;, =
Oxj  Ou 7 = 0p

ant this implies that

" OH OH OH
Z . _

The idea’s of the method of characteristics is to make the terms involving second

derivatives disappear by a good choice of z. In this case, we will choose &; = g—g
and obtain the following Cauchy problem

(, _ o

= 5
oH z(0) =y
W o= p- o with uw(0) = u(y) for all y € 092. (2.2)
P
p(0 Vu(y)
. OH OH
\p B or ou ¥

u(s) = u(xz(s)) and  p(s) = p(x(s)).

Solving the above Cauchy problem for every y € 9€) could provide a solution to
(4.1)) in a neighborhood of the boundary of €. O
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Example 1. Given Q C R? be a bounded open set with smooth boundary, consider
a Eikonal equation

2 =0 Q
|Vu| x € (2.3)
U = 0 on 0.
In this case, the function
H(x,u,p) = pi+ps—1.
The associated characteristic system of ODEs is
= 2p z(0) = ye o
= 2p]* = 2 with u(0) = 0 (2.4)
=0 p(0) = n(y)

where n(y) is the internal unit normal to the set {2 at point y. Solving this system
of ODEs, we get

z(s) = y+2n(y)s and  u(z(s)) = 2s.
Assume that €2 is smooth. The solution u is a neighborhood of 9 is
uw(@) = |z —y| = doa().
However, if €2 is bounded then there will be a set ¥ C 2 where for every z € X,
doo(z) = |2 — | = [T — 1

for some y; # yo € 0€2. This shows that does not admits a global C'! solution in
general. One should consider solutions in a generalized sense. By Rademacher’s the-
orem, every Lipschitz real valued function on R” is differentiable almost everywhere.
This leads to a natural definition

Definition 2.1 The function u : Q@ — R is a generalized solution to the Cauchy
problem if it is Lipschitz, satisfies the boundary conditions, and solves the
PDE almost everywhere in Q.

This concept is fine for the existence but it does not leads to a useful uniqueness
result. Indeed, consider the case of Eikonal equation (2.3) with Q@ = (—1,1). One
can easily check that both u;(z) =1 — |z| and

2) ]

1 17
us(z) = 5 [X(—m] X <1 - ) + X[o,1) X (1 -

T+ =

2
are generalized solution to (4.1). More general, all piecewise affine functions with
slopes in {—1,1} are generalized solutions. Notice that these solutions except for
the distance function u; has a local minimum in the interior of | — 1,1[ . Thus, u

1
x__

2
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is the only one that can be obtained as a vanishing viscosity limit. Indeed, assume
that there exists a family of C? solutions to the viscous equations

Wl -1 = el

such that lim,_,¢+ ||us — tl|oc = 0 for some continuous function u. Assume that @
have a local minimum z, €] — 1, 1[. Then

u(zg £0) > u(xo)

for some 6 > 0. Thus, for ¢ > 0 sufficiently small, the function u, has a local
minimum x. € [xg — 9§,z + J] and
u(z:) = 0 and  uwl(z) > 0.

£

This yields a contradiction that
—1 = |ul(z)P -1 = e-u(2.) > 0.

In general, one could looks for a solution to (4.1)) by vanishing viscosity method,
i.e., let u. be a C? solution to the viscous equation

H(z,us;,Vu,) = - Au,.
Show that
e u. is locally bounded in €2, uniformly w.r.t ¢;
e the sequence {u.}.>o is locally equicontinuous.
The Ascoli’s Theorem implies that there exists a subsequence sequence of {u.}

converges locally uniformly to u which could be the unique solution to (4.1]).

2.2 Viscosity solutions via touching functions

Given 2 C R" open, consider the first order PDE

H(z,u,Vu) = 0 z € (. (2.5)
Here the function H : Q x R x R® — R is a continuous (nonlinear) function.
Definition 2.2 A function u € C(2) is called:

e a viscosity subsolution of if for every ¢ € C*(Q) such that u — ¢ has a
local maximum at xq, it holds

H{(xo,u(x0), V(x0)) < 0;
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e a uviscosity supersolution of if for every o € C1(Q) such that u — ¢ has a
local minimum at xq, it holds

H(zg,u(xg), Vio(xo)) > 0;

e q viscosity solution of if it is both a sub-solution and super-solution.

The above definition of viscosity solution is naturally motivated by the properties
of vanishing viscosity limits.

Theorem 2.3 Let u. be a C? solution to the viscous equation
H(z,u.,Vu.) = €-Au,. (2.6)

Assume that the sequence {u.}e>o converges uniformly to w on Q. Then u is a

viscosity solution of .

Proof. We only need to show that u is a sub-viscosity solution of (2.5)). The fact
that u is a supersolution is proved in an entirely similar way. Given ¢ € C!(Q) such
that u — ¢ has a local maximum at x(, we show that

H(zo,u(xo), Vio(xo)) < 0 (2.7)

Consider an alternative function

e(y) = ely) + ly — ol

such that u — ¢ has a strictly local maximum at zo, and V(xg) = V(zg). Thus,
since u. converges uniformly to u in €2, one can show that for any given § > 0, there
exists 0 < p < § and a C? function v such that

(i) For every y € B(zo, ps), it holds
[Vip(y) = Vp(zo)| <6, Vely) = Vo)l < 4

(ii) For every ¢ > 0 sufficiently small, u. — ¢ has a local maximum at a point
ZTe € B($07P6>‘

By the continuity of v and H, it holds

sup  [H(y,u(y), ¥(y)) — H(zo, u(xo), Vu(zo))| = O(5). (2.8)

yeB(IO 7p5)

From (ii), one gets

Thus, implies that
H(ze,us(x.), Vib(z)) = H(ze,ue(xe), Vue(xe)) = eAu(z.) < eAi(z.).



There exists a sequence (£,,)m>1 converge to 0+ such that lim,, , 2., = T €
B(xg, p), we have
H(z,u(z),Vi(z)) < 4.

Thus, ([2.8) implies that
H(zo,u(zo), Vu(zg)) < O(0).
Taking 0 to 0+, we then obtain (2.9)). O

2.3 Generalized differentials

We are now introducing a basic concept of generalized differentials in nonsmooth
analysis which can be used to define a viscosity solution and plays important role
in regularity theory.

Definition 2.1 Let f be a real valued function defined on the open set Q C R™. For
any x € €1, the sets

D™ f(z) = {p € R | liminf ) - ff;)__xfp’y — o}
D+f(:E) _ {p c R" ‘ liriljgtlp fly) — f|(;f)_—x|<p,y — ) < 0}

are called, respectively, the (Fréchet) sub-differential and super-differential of f at
x.

In order to get a better felling on the above concepts, Let’s denote by

Epi(f) = {8 R xR | 5> f(y)}

the epigraph of f, and

Hyp(f) = {(2.8) €R"xR| A< f()}
the hyograph of f. One can show that

e pis a sub-differential of u at x iff the vector (p, —1) is a Fréchet normal vector
to Epi(f) at a point (z, f(x)), denote by (p, —1) € Ny (v, f(2)), i-e.,

| B (@ ()
Epiu)ii‘;?ﬁ?i‘?x,ﬂx»<(p’ D ||<y,ﬂ>—<x,f<as>>||> <0

e p is a super-differential of u at x the vector (p, —1) is a Fréchet normal vector
to Epi(f) at a point (x, f(x)), denote by (—p,1) € Ngyp(f)(x,f(x)), ie.,

| W) (@)
Hyp<f>5525>i‘ix,f<x>><< P-L), |r<y,ﬁ>—<x,f<m>>u> =0
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In other words, one says that

e p is a sub-differential of w at z iff the hyperplane y — f(z) +p- (y — x) is
tangent from below the graph of u at point x.

e p is a super-differential of u at x iff the hyperplane y — f(z)+p- (y — z) is
tangent from above the graph of u at point x.

Example: Consider the distance function to the set | — oo, —1] U [1, +00]

0 if lz] > 1
d(z) =
1— |z if lz] < 1.
In this case, one computes that

The following characterization of sub- and super-differential is very useful:
Lemma 2.4 Let u be continuous in 2. Then

(1) p is a super-differential of f at x (p € DT f(x)) iff there exists o € C1(Q) such
that f — ¢ has a strict local maximum at © and V() = p;

(ii) p is a sub-differential of f at x (p € D~ f(x)) iff there exists p € C1(Q) such
that f — ¢ has a strict local minimum at x and V() = p.

Proof. Assume that there exists p € C!'(Q) such that f — ¢ has a local maximum
at x and V(x) = p. In this case, we have

fly) = f(@) < oly) —px) = p-(y—2)+O0(ly — )

and this implies that

lim sup fly) = f(z) = (py —x)

y— |y —m|

Thus, p isin Df*(x).

Conversely, assume that p € Df*(x). Consider a non-decreasing function p :
[0, +00[— [0, +00] such that

fly) = f(x) = (p,y —x)
ly — |

0<|z—y|<r

p(r) = maX{O, sup
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Since p € D f*(x), it holds

fly) = f(x) — (p,y —x)
ly — x|

p(0) = lim sup
T_>0+0<|m—y\<r

The function ¢ : Q — R is defined by

2|y—z|
@@)Z‘ﬂ@+m‘@—x%ﬁé p(r)dr + Jy — o

2ly—z|

Since / p(r)dr = |y — z| - O(]y — z|), it holds that ¢ € C*(Q2) and Vy(z) = p.

0
On the other hand, we estimate

2|y—zx|
F) — oly) = U@%—ﬂ@—p%y—@%ié p(r)dr — |y — af?

2ly—=
< olly=ab-tr—al= [ o=ty < 0
and thus f — ¢ has a local strictly maximum at x. O
Corollary 2.5 A function u € C(Q) is
e a uiscosity subsolution of if
H(zg,u(xo),p) < 0 forallzg € Q,p € DM u(xy) (2.9)

e a viscosity supersolution of if f
H(zo,u(xg),p) > 0  forallzg € Q,pe D u(xy) (2.10)

e a viscosity solution of if and hold.

Lemma 2.6 Let f € C(Q) and ¢ € C'(Q) be such that f — ¢ has a strict local
mazimum at x. If (fn)n>1 converges to f uniformly, then f,—p has a local mazimum
xn for every n > 1 such that

lim z, = = and Um () = u(x).
n—oo

Proof. For every § > 0 sufficiently small, there exists €5 > 0 such that

|fili|p:a f(y) — o)) < flz)—o(r) —es.

Since (fy,)n>1 converges to f uniformly, one has

& for all n > N

sup |fm(y) — fy)| <

ly—z| <6
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for some Ns > 0. Hence, for all n > Ny, it holds

sup [fm(y) —@(y)] < sup f(y) —w(y)+ sup |f(y) — fi(v)]

ly—z|=0 ly—z|=0 ly—z|<d
€s

< fla)-ple) -2

and this implies that the function f,, — ¢ has a local maximum y,, in B(z, d) for all
m > Nj. In particular, for every 6 = %, let N,, € N be a smallest natural number
such that f; — ¢ has a local maximum y}* in B(z,1/m) for every k > N,,. The
sequence (,),>1 is constructed by

= yb forall N, <k < Ny

L]
To complete this subsection, let us recall the basic properties of superdifferential
and subdifferential of f.

Proposition 2.1 Let f: Q — R" and x € Q. Then, the following properties hold:
(i) D*f(z) = —D~(~f)(x).
(i) DT f(x) and D~ f(x) are convex (possibly empty).

(i11)) DT f(x) and D~ f(x) are both nonempty if and only if f is differentiable at x.

In this case, we have that
DY f(z) = D™ f(x) = Df(x).
(iv) The sets of points where sub-differential or super-differential exists

— e eQ| D) A0}, QF = {zeQ| D fx) £ 0)
are dense in €).

(v) Both the following sets
St = {z € Q| D" f(x) has more than two elements}

and
S~ = {zx € Q| D" f(x) has more than two elements}

are Hausdorff (n — 1)-rectifiable.
Proof. (i) and (ii) are trivial. Let now us prove (iii).
1. Assume that both f is differentiable at = then it is clear that
Vf(x) € DY f(x)( D flx
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For any p € DV f(x), there exists ¢ € C'(€2) such that f — ¢ has a local maximum
at z and V(x) = p. In particular, one has that 0 = V(f — ¢)(x). Hence,

Vi(z) = Vo(r) = p.

and this yields DT f(x) = Vf(z). Similarly, one can also have that D~ f(x) =
Vi(x).

Assume that both Dt f(x) and D~ f(x) are non-empty. For p* € D*f(x), there
exist p, 1) € C*(Q2) such that

Vo(z) = p*, Vi) =p,  (f-9)@) = (f=¢)(x) =0

f — ¢ has a local maximum at x, and f — has a local minimum at x. This implies
that

ely) < fly) < ¥(y)  forally € B(z,0)
for some 0 > 0. In particular,
v(y) —ely) =2 0 = Px) —p(r)  foralye B(z,0)

and it yields Vi(z) = Vp(z). Thus,

P = Ve(x) = Vi(z) = p-
and f is differentiable at x and Df(x) = p* =p~.

2. Let’s show that Q" is dense in €2. The case Q™ is entirely similar. For every
T € Q and £ > 0, we need to show that there exists y € B(Z,¢) such that DT f(y)
is non-empty. Let’ introduce a smooth function ¢ : B(xg,e) —|0, +oo[ defined by

1

e? — ||z — ol

o(r) = for all z € B(xo,¢).

Since

lim p(z) = + oo,
|x—x0|—0+

the function f — ¢ has a local maximum at y in B(zo,¢). This implies that

Vp(y) € Df(y)

and the proof is complete.

3. We will prove (iii) later. O
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2.4 Comparison principle
2.4.1 Static problems
Consider the Hamilton-Jacobi equation in a open bounded domain €2 C R”
u(z) + H(x,Vu) = 0 z € (2.11)

where u : 2 — R and the Hamiltonian H : Q2 x R® — R is uniformly continuous in
x variable and satisfies the equicontinuity assumption

[H(z,p) = H(y,p)| < w(lz—y|(1+][pl)) (2.12)
for some continuous function w : [0, +00[— [0 4 oo| with w(0) = 0.

Theorem 2.7 Let u,u € C(Q) be viscosity sub- and super solutions of . If

u(z) < u(x) for all x € 092, (2.13)

then u(x) < u(x) for all x € Q.

Proof. 1. We need to show that

rg{lg[u(aﬁ)—ﬂ(:v)] < 0.

Assume by a contradiction that there exists zy € €2 such that

u(xg) — u(xy) = rileaﬁx[g(x) —u(x)] > 0. (2.14)

If both u and u are differentiable at xo then it holds
Vu(rg) = DVu(zg) = D u(xg) = V().

Thus,
u(zo) + H(wo, Vu(zo)) < 0 < (o) + H(zo, V(o))

and this yields a contradiction.

However, the main difficulty is when both u and u are not differentiable at xy. To
handle this case, the idea is to seek for nearby points z. such that

w(z.) —u(z:) > 0 and  p. € DFu(e)( D a(z.). (2.15)

Hence,
Q(x€>+H<$€7p€> S 0 S /L_L(‘,'UE)—’_H(CCE)pE)

and this yields a contradiction again.

Main question: How to find z. such that (2.15) holds?
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2. To find z., one use a classical technique of doubling of variables. The key idea is
to look at the continuous function of two variables ®, : Q2 x 2 — R defined as

1 —
O (z,y) = ulx) —uly) — 2 |z — y|? for all (z,y) € Q x Q.

We claim that ®. attains a maximum in 2 x ) for ¢ sufficiently small. Indeed, let
(2, y:) be a maximum of &, i.e.,

O (r,y.) > D(x,y) for all (x,y) € Q x Q.
Since u(xg) — u(zo) > 0, it holds
O (e, y:) > D(xo,m0) = u(xg) —u(zg) == 6 > 0.
In particular, set M := max{||u||c, |||}, we have
2. — ye| < 2VMe. (2.16)

On the other hand, by the uniform continuity of % and w, for ¢ > 0 sufficiently small,
it holds 5

max {|u(z) — u(y)], [a(z) —a@)l} < 3

for every v —y| < v2Me. Thus,

0 < q)s(xsays> < ﬂ(xe)_ﬂ<ys) < min

Q(ya) - a(ye) + |Q(5L‘€) - Q(ye”
< minfu(e) — 0(e) uye) — alye)} + o
and this implies that
min{u(r.) — i) ulye) ~ ()} > © > 0

From ([2.22), one gets that both x. and y. are not in the boundary of €.

3. Let ¢€:§—>Randw5:ﬁ—)]RbesuChthat

B 1
o) = u(e) = Pe(z,ye) = wlye) + 5o —wel
and 1
ws<y) = ﬁ(y) + q)(xe,y) = H(%) - 2_6’1: - ye‘2
It is clear that u — . = (-, y.) has a maximum at x. and and u — ¢, = —P(z., )

has a minimum at y.. Thus,
pe = ——==Ve(:) = V() € Drulz) () D u(ye).
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Recalling that u and « are viscosity sub- and super solutions of , we have
u(we) + H(ze,pe) < 0 < a(ye) + H(ye, p:)-
In particular, the condition yields
0 < Dc(ze,ye) < wlre) —ulye) < H(ye,pe) — H(xe, pe)

< ot (10 2541).

4. To obtain a contradiction, we will show that

|me_ye|

lim = 0. (2.17)
e—0+ g
Indeed, since ®.(z.,z.) < P (z.,y:), one has
1
Q("Ea) - ﬂ(%E) < Q($a) - ﬂ(ya) - 2_8 ) |$5 - ya|2

and this implies that

1 _ _
% ’ |:)3€ - y€|2 < |u(x6) - u(y€>|'

Thus, (2.16) and the uniform continuity of @ yields (2.17)). O

As a consequence, one obtains a uniqueness result for the boundary problem

u+ H(x,Vu)= 0 x €
(2.18)
u =y x € 0N.

Corollary 2.8 Under the same assumptions in Theorem[2.7], the boundary problem
has at most one viscosity solution.

2.4.2 Time dependent problems
Consider the Cauchy problem
u+ H(t,z,Vu) = 0 (t,x) €]0,T[xR"
(2.19)
u(0,z) = g(x) r € R

where u : [0,7] x R® — R and the Hamiltonian H : [0, +oo[xR"™ x R™ — R satisfies
the Lipschitz continuity assumptions, i.e., there exists a constant C' > 0 such that

[H(t,z,p) = H(s,y,p)| < C- (|t —s[+ ]z —yl)- (1+]p]) (2.20)

and
|H(t,z,p) — H(t,z,q)] < C-|p—q (2.21)

for all t € [0, T, x,y,p,q € R™
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Theorem 2.9 Let u,u € C([0,T] x R™) be bounded and uniformly continuous vis-
cosity sub- and super solutions of . If

u(0,z) < u(0,x) for all z € R", (2.22)

then
u(t,x) < a(t,z) for all (t,x) € [0,T] x R". (2.23)

Proof. We will use the same techniques in the proof of Theorem Assume by a
contradiction that (2.23)) fails, i.e.,

sup  |u(t,z) —a(t,x)] > 0.
(t,2)€[0,T]xR™

In particular, there is A > 0 such that

sup  [u(t,z) —ult,z) —2XM] = 6 >0 (2.24)
(t,x)€[0,T|xR™

Smooth case: If there exists (tg,zq) € [0,7] x R™ such that

u(ty, xo) — ulty, zg) — 2Mt = sup  [u(t,z) —a(t,z) —2XMt] = 0
(t,x)€[0,T] xR™

and both u and u are differentiable at (¢, zo) then
Vu(ty, zg) = Vu(ty,zo), u,(to, mg) — ug(to, xo) —2A > 0
and
u,(to, xo) + H(to, xo, Vu(to, zo)) < 0 < w(to, zo) + H(to, zo, Vu(to, o))

Thus,
20 < wy(to, xo) — Ue(to, w0) < 0

and this yields a contradiction.

Nonsmooth case: 1. Introduce the function ®. : ([0, 7] x R")* — [0, 400 such
that for all (¢,s,2,y) € R? x R?"

~ 1
(I)E (t,.’L‘, Svy) = Q(t,l‘)—U(S,y)—A(S—Ft)—? (|t - S|2 + |‘T - y|2) —& (|‘T|2 + |y|2) :
Since u and u are bounded, set
M = max{[|t, [|ull},

we have
1
O, (t,x,8,y) < 2M —e- (2> +|y|*) — ek (|t = s>+ ]z —yl). (2.25)
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This implies that ®. admits a global maximum at a point (t., z., s., y=) € ([0, T] x R™)?,
and

q)s(taaxaasavya) Z sup (I)g(t,l',t,l')
(t,x)€[0,T|xR™
= sup [u(t, z) — a(t, z) — 2X\t — 2¢]z[*] .
(t,z)€[0, T xR™

From ([2.24)), there exists (t1,z1) € [0, 7] x R™ such that

30
u(ty, x1) — a(ts, x1) — 20t > T

Thus, for every 0 < € < one has

8y [?’

sup [u(t, z) — a(t, z) — 2\t — 2¢|z’]
(t,)€[0,T]xR™

> ult —u(t —2X\ — 2 —— =
- Q( 17.:61) U( 17$1> 1 8’I1|2 2

and this yields

q)s(tsaxmssays) > > 0.

N S

From (Z25), we get
1
= (Jt- = s> + |2ze —ve?) + 2 (Jo* + [9-]?) < 2M,
and
2M
max{ |z, [ye[} < % and max{|t: — sc|, |z —y:|} < 2Me.  (2.26)
Thus,

0 S (I)E(tsuxsussays)_q)s(tsvx87t€7x€> = Ia(t&??xs)_a(siﬁys)

1
— A (86 - ta) - ? : (|ta - 35|2 + |:135 - ye|2) — &> (|ya|2 - |xa|2) ,

and this implies that

1 2 2 - - 2 2
5_2 : <|ta - 35' + |xa - ya| ) < u(taaxa) _U(Saaya) +A- ’ta - Sa| +e- Hya‘ - |$s’ | :
By the uniform continuity of @ and ([2.26)), one obtains

.1 2 2
51&& ok (|t = s.]* + |z —y|?) = 0. (2.27)
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On the other hand, from the boundary condition, it holds

N

S (I)s (ts; Te,y Se, ye) S H(tsa ZCE)—l_L(SE, ye) S Q(tsa xs)_a(357 y€>_ﬂ<oa $5>+ﬂ<0, xf—:)
S |u(t5, xe) - Q(O, xe)‘ + ‘I_L(SE, ys) - ﬂ(o, y€)| + |’I_L(0, xs) - 17,(0, ys)’

Thus, by the uniform continuity of @, u and (2.27)), we conclude that the maximum
of ®. can attain only if both ¢. and s. are strictly positive for ¢ sufficiently small.

2. Let ¢, : [0,7] x R" — R and 1. : [0,7] x R" — R be such that

Ws(t,x) = Q(ta l‘) - (I)€<t,$, Seays) = a(ssays) +A- (t + 55)

1
e (2P +19el*) + - (It = 5P + o — )
and

Ve(s,y) = u(s,y) + P(te,xe, 5,y) = ulte, ) = X- (t- + s)

1
—¢£ (|l‘5|2 + |y|2) - ? ' (|t - 35|2 + |£E - ya|2) .

It is clear that u — ¢. = D.(+, s, y.) has a maximum at (t.,z.) and and @ — ¢, =
®_(t., z.,-) has a minimum at (s, y.). Since u and @ are viscosity sub- and super

solutions of ([2.28))

0.
ot

A direct computation yields

_ o

(teaxs)+H(ta7xsav§05(tmme)) S 0 =

(Se; ye) + H(357 Ye, V¢6(S€a ya))'

2t5— e 2 e Ye
A—i—%—l—f[(taxs,u—k%xs) <
€ €

0
2t5_ € 2 e Ye
< —)\—i-—( 2S)+H(55,y5,—(m 2y)—25y€>.
€ £

Using the assumptions (2.20)-(2.21]), we estimate

2 e~ Ye 2 e Ye
2\ < H (867y67 M - 25ye> —H <t67 Le, M + 28[&;)
> £

2 Te — Ye
< € Jaele =l + (=l b= - (14 2 ne )|

Taking ¢ to 0+, we get that A < 0 and this implies a contradiction. O

Corollary 2.10 Under the same assumptions in Theorem [2.9, the Cauchy problem
has at most one bounded and uniformly continuous viscosity solution
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2.5 Perron’s method
2.5.1 Static problems
Hamilton-Jacobi equation in a open bounded domain €2 C R”
u(z)+ H(z,Vu) = 0 x €} (2.28)

where u :  — R and the Hamiltonian H : Q x R® — R is uniformly bounded and
continuous, and satisfied a coercive property

lim min H(z,p) = + oo. (2.29)

Ip|—=+c0 ze)

Consider the following constant

Y = max|H(z,0)|

z€Q
It is clear that u, = —vy and @y = 7 and are viscosity sub- and super-solutions of
(2.28). Indeed,
uy(x) + H(z, Vug(z)) = —70+ H(z,0) < 0

< v+ H(z,0) = up(x) + H(z, Vig(z)).

On the other hand, assume that u; and wuy are continuous sub-viscosity solutions of
(2.28]). Then the function u = max{uy, us} is also continuous sub-viscosity solutions
of (2.28). Let’s consider the closed set

So = {z € Q| u(xr) =us(x)}.
Two case are considered:
e For any given x € Sy, if p € DV u(z) then
p € Du(x) ﬂD+u2(x).
Since u; and us are sub-viscosity solutions of , it holds
wi(x) + |H(z,p) < 0  i=1,2.
Thus,
w(z) + |H(z,p) = g?)é {u;(x) + H(z,p)} < 0.
e For any given z € Q\Sp, the continuity of u; and uy imply that there exists
0 > 0 such that
u = wu or u = uy in B(z,0).

and this implies that
u(z) + [H(z,p)| < 0.

for all p € DVu(x).
The proof is complete. O
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With the same argument, the followings holds:

Lemma 2.11 Let (u;)ie; and (v;)ie; be families of continuous viscosity sub-solutions

and super-solutions of . Assume that

u = Ssupu; and v = supuv;
iel iel

are continuous. Then, u and v are viscosity sub-solution and super-solution, respec-
tively.

The above observations and the comparison principle lead to a natural question:

Question: Is there one construct a viscosity solution of (2.28) with values in
[—70,Y0]-

Theorem 2.12 Let u: Q — R be defined by

u(z) = sup {gp € C(Q, [—v0, 7)) ‘ ¢ is a subsolution to (2.28 } (2.30)

If u 1s continuous then u is a viscosity solution to .

Proof. From Lemma [2.11 we need to show that u is a viscosity super-solution of
(2.28). Given any zy € Q, take ¢ € C'(€2) such that u — ¢ has a strict minimum
zero at xg, we need to show that

u(xg) + H(xo, Dp(x)) > 0. (2.31)
Two cases are considered
o If p(xg) = u(wp) = Yo then
p(x) —p(ro) < u(z) —u(zg) < 0
for x in a neighborhood of x5 and this implies , ie.,

u(zo) + H(zo, Dp(20)) = 70+ H(20,0) > 0.

e Otherwise, u(zg) < o — € for some small & > 0. Assume that (2.31)), there
exists 0 < € < g7 such that

u(zo) + H(xg, Dp(xg)) < —e.
By the continuity of u and ¢, there exists § > 0 such that

u(z)+H(x, Dp(x)) < —g and  u(x) < ’Yo—g for all v € B(zo,9).

Since u — ¢ has a strict minimum zero at xy, it holds

n 8%36)[@0(@ o(x)] >
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Set v := min{n, e}, we denote by

u(x) z € Q\B(zo,0)
U(z) = (2.32)
max{u(zx), p(x) +n/2} x € B(xg,9).

It is clear that
-7 < YP(x) < % for all x € Q.

We now claim that there exists 0 < d; <  such that
u(z) > @(x) + g for all x € B(xzg,0)\B(xg, d1).

Indeed, for any x € 0B(xo,d), there exist d, > 0 such that

u(z) —p(z) > % for all © € B(z,d,).

The compactness property of dB(xg,d) implies that it can be covered by a finite
number of open ball B(z,J,/2), i.e., there exists z1,xs,...,2xy € 0B(xg,d) such
that

N
0B(x0,6) C | JB(:,0,/2).
i=1
Thus, the constant d; > 0 does exist. In particular, ¢ is continuous in €2 and it is

easy to see that ¢ is also a viscosity sub-solution of (2.28)). However, at xq we have
that

u(zo) < p(xo) < ¥(wo)
and this yields a contradiction. O

Corollary 2.13 The viscosity solution u constructed in is Lipschitz.

Proof. Recalling that v in bounded by 7y, one has
H(z,p) < 7  forall pe DVu(z),z € Q. (2.33)
Since H is coercive, it holds that

sup  [p| < C
z€Q,peDtu(x)

for some constant C' > 0. We show that
u(y) —u(z) < C-ly—z| for all 7,y € Q

and this implies that u is uniformly Lipschitz with a Lipschitz constant C'. Given
any € > 0 and z € (2, consider the function

oly) = (C+e)-ly—2x| for all y € Q.

Assume that u — ¢ attains a max at some z.. Two cases are considered:
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o If z. # z then

T.— X

Vo(z.) = <c+e)-( ) € Du*(z)

|z — x|
and this yields a contradiction.

o If xr. = x then

and it yields
The proof is complete. O

2.5.2 Time dependent problems
Consider the Cauchy problem
uy + H(x,Vu) = 0 (t,x) €]0, co[xR™

(2.34)
u(0,z) = g(x) r € R™.

where u : [0,7] x R* — R and the Hamiltonian H is uniformly bounded and
continuous in R™ x B(0, R) for any R > 0 and satisfied a coercive property

lim inf H(z,p) = + oc. (2.35)

|p| =400 TER™

Under the above assumption, one has that uy(t,z) = g(z) — 70 - t and ug(t,z) =
g(x) — o - t and are viscosity sub- and super-solutions of (2.34)) where the constant

Yo = max|H(z,0)] < +oo
z€Q

Theorem 2.14 Assume that g € C*(R™) is uniformly Lipschitz. Letu : [0, 0o[xR"™ —
R be defined by

u(r) = sup {gp € C([0,00] x R",R) ‘ uy < ¢ < g is a subsolution to (2.34 }
2.36)

If u is continuous then u is a viscosity solution to .

Sketch of proof. We need to show that u is a super viscosity solution of (2.34)).
Given ¢ € C!([0, 0o[xR",R) such that u—¢ has a strict minimum zero at at (¢, ),
we show that

©i(to, xo) + H(xo, Vip(to, z9)) > 0. (2.37)

Two cases are considered:
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o If p(ty, z0) = u(ty, zo) = to(to, o) then is trivial.
e Otherwise, assume by a contradiction that ¢(tg, o) < ug(to, xo) and
i(to, xo) + H(xo, Vip(te, z0)) < — 2nm.
In this case, there exists ¢ > 0 and r > 0 such that

u(t,z) < up(t,z) —e for all (t,z) € [to — r,to + 7] X B(xo,7)

o(t,x) < u(t,x)—e¢ for all (t,x) € Aty — r,to + 1] x dB(xg,7)
Thus, the function ¢ : [0, +00[xR" — R defined by

u(t, ) (t,z) € [0, +oo[xR™\ [ty — 7, to + 7] X B(xo,7)
h(x) =
max{u, p + ¢/2} (t,x) € [to — r,to + 1] X B(zg,7),

is continuous and a subsolution of ([2.34) but
£
¢(t0,1‘0) = (p(tg,xo) + 5 > U(to, l‘o).

This implies a contradiction.

3 Regularity theory

3.1 Semiconcave functions

In this subsection, we collect some main properties of a semiconcave function with
linear modulus.

Definition 3.1 Let €2 C R™ be an open set. We say that a function f : 2 — R is
semiconcave with linear modulus if there exists C' > 0 such that

M@)+ @ =Nf) = fOz+ (1 =Ny) <A1L=A)-C |y —af’, (3.1)

for all X\ € [0,1] such that [z,y] C Q. The constant C is called a semiconcavily
constant for f in Q.

Remark 3.1 The function f : Q — R is semiconcave with the semiconcavity con-
2

stant C' in Q if and only if f(-) — C - % is concave in Q or D*f < C in the sense

of distributions.

o1



We now introduce a standard criterion of semiconcave functions.

Proposition 3.1 Let f: Q — R. Assume that f continuous and
f(x+h)+ flx—h)—2f(x) <C-|h (3.2)

for all [x — h,x + h] C Q. Then, f is semiconcave with a semiconcavity constant C
i €.

Proof. We set
g(x) = f(x) = C-|z]?, forallzeQ.

From (3.8]), we have that
gz + h) + gz — ) — 29(x) <0, (33)
for all [x — h,z 4+ h] C 2. Moreover, follows that
Ag() + (1~ (@) — gz + (1 — A)y) <0, (3.4

for all A € [0, 1] such that [z,y] C Q. Now, one can show that (3.3]) implies (3.4)) for
all A € QN [0,1]. Then, by using the continuity, we obtain (3.4)) for all A € [0, 1].
Ul

Proposition 3.2 A semiconcave function (with constant C') f : Q — R is locally
Lipschitz continuous in €2.

Proof. 1. As in the previous Proposition, let g : 2 — R be such that
g(x) = f(x) = C - |z]* forall x € Q.
The function ¢ is concave in €2, i.e.,
Ag(y)+ (1 —Ng(z) < gz + (1= Ny) for all A € [0,1], [z,y] C Q. (3.5)

Given any xg € (), we consider a closed cube () with center x( such that () C €.
Let x1, ..., zon be the vertices of () and

m=min{f(z;) |i=1,..,2"}.

For every y € @, there exists 0 < A, ..., Agn < 1 such that Zfil A=1

2n 2n
Z)‘i =1 and y = Z/\"x’
i=1 =1

From (3.5)), it holds

m < ZAigm) < g(y) (3.6)
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and this yields

fly) zm=C-flyl* = mo :=m = C-max|z]*  forally Q. (3.7)

On the other hand, one has
g9(z) < 2g(zo) — (220 — x) < 2g(x9) —m  forallz € Q

and
f(&) < 2f(a0) = Cllagll* = m+C - mas ||

Thus, (3.7) implies that

sup )] < 2f(x0) + Cllxol® + [m| + C - max [Els
€ Z

1
2. We claim that f is Lipschitz in () = x0+§(Q—x0). Indeed, given any x,y € @1,
there exists x; € 0Q such that x € [y, z1] and thus

ly—al 2 — 2|

_|x1—y| ! |x1—y| '

From , one has
9() —9ly) _ 9ly) —g(z1)
=yl T la—yl

and this implies that

f(@) = f(y)
ly — |

fly) = f(z1)

‘xl —yl

< —Cola gl +C lr+y

Since f(-) is bounded in @ and |z, —y| < ‘ﬂ%@), we have

f(@) = )

<L
ly — | v

for a suitable constant Ly > 0. Similarly, one gets that

fly) — f(=)
y—a '@

and this yields

1f(y) = f(@)] < Lg-|ly—=z|, foralzyecq.

The proof is complete. U
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Corollary 3.1 Let f: Q — R. f is semiconcave with a semiconcavity constant C
i Q if and only if f continuous and

fx+h)+ flx —h) —2f(x) < C-|h)? (3.8)
for all [x — h,x + h] C Q.
Let us now recall the result of H. Rademacher.

Theorem 3.1 (H. Rademacher) A locally Lipschitz function f : Q — R is a.e.
differentiable in €.

Hence, we obtains the first result on the differentiability of semiconcave function.
Corollary 3.2 A semiconcave function f : ) — R is a.e. differentiable in 2.

Moreover, a semiconcave function with linear modulus is a concave function up to
a quadratic term. This allows to extend immediately some well-know properties of
concave functions.

Theorem 3.2 Let f: Q2 — R be semiconcave. Then the following holds:

(i) (Alexandroff’s Theorem) f is a.e. twice differentiable in 2, i.e., for a.e.
x € (), there exists a vector p € R™ and a symmetric matriz B such that

i JW) = (@) = {py —2) + (Bly — ),y — )

y—e ly — |2

= 0.

(ii) The gradient of f, defined almost everywhere in §2, belongs to the class BVi,.(£2, R™).

Example. (Distance function) Let S C R™ be closed. The distance function from
a point to S is defined by

ds(x) =min|y — z|, (z € R")
yes

is locally semiconcave in R™\S.

Exercise. Proving that
(1) ds(-) is locally semiconcave in R™\S.
(2) ds(-) is not locally semiconcave in R™.

(3) d%(-) is seminconcave with semiconcavity constant 2.
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Proposition 3.3 Let f : Q@ — R be semiconcave with semiconcavity constant C.
Then, a vector p € R™ belongs to DT f(x) if and only if

C
f) = f@) =y —a) < 5 -ly—af
for every y € Q such that [z,y] C Q.

Exercise. Proving the above proposition.

Corollary 3.3 Let f : Q — R be semiconcave with semiconcavity constant C' and
let [x,y] C Q. Then, for every p € DT f(x), g € D" f(y), it holds

(g—p,y—x) <20 |y — 2|

Before going to give a presentation of superdifferential of a semiconcave function.
We introduce the concept of reachable gradient.

Definition 3.2 Let f : 2 — R"™ be locally Lipschitz. For every x € §2, we denote by
D*f(x) = {p = klim Df(xy) | f is differentiable at z;, and z; — :v}
—00

From Rademacher’s Thereom, one can see that D* f(z) is nonempty. In the case of
seminconcave function, we also have that

Proposition 3.4 Let f : Q — R be semiconcave with semiconcavity constant C'
and let x € Q). Then,

(i) DY f(x) = co(D*f(x)) where co(D*f(x)) is the convex hull of D* f(x).
(i1) DT f(x) is singleton if and only if f is differentiable at x.
(i1i) DT f(-) is upper semicontinuous.
(iv) if DT f(y) is singleton in the neighborhood O, of x then f(-) is C' in O,.

To conclude this subsection, we are now discussing on the singular set of f. We
denote by
Y= {2z € Q| fis not differentiable at x}.

From proposition [3.4], if f be semiconcave then
¥ ={z € Q| dimyD*f(z) > 1}. (3.9)
The followings hold:

Theorem 3.3 Let f : 0 — R be semiconcave. Then, X is countable H=) -
rectifiable. More generally, if we denote by

S5 ={z € Q| dimy D" f(z) > k}

then E’} is countable H™F) -rectifiable.

95



3.1.1 Semiconcavity and time optimal control
Consider the control systems

z(t) = f(z(t),u(t)), te€]0,4+00]a.e.,
(3.10)
z(0) = xo,

where rg € R” and
+ f:R" x U — R" is the dynamics of the control system
+ U C R™ is the control set
+ u:[0,400[— U is a control function.
Standard hypotheses
(H1) f:R" x U — R" is Lipschitz
lfly,u) — f(x,u)| < Ly - |ly— x|, forall z,y € R" uecUl. (3.11)

Moreover, the gradient of f with respect to x exists everywhere and is locally
Lipschitz in x, uniformly in w.

(H2) U is compact.
The set of admissible control is
Uy = {u :[0,00) = U | wis measurable}.

For every u € Uy,q, we recall that y***(-) is the trajectory staring from x with control
u which is the unique solution of . The minimum time needed to steer x to the
closed target S, regarded as a function of z, is called the minimum time function
and is denoted by

Ts(x) :=inf {t > 0] y™"“(t) € S,u € Upa}. (3.12)
Now, we define
H(z,p) = Sug<p, flz,u). (3.13)
ue

By the dynamic programming principle, one can show that T(+) is a vicosity solution
of Hamilton-Jacobi-Bellman equation

H(z,VTs(z))—1=0, forall z € R\S, (3.14)
ie., for all z € R\,
H(z,p)—1>0, forallpe D Tg(x),

H(x,p)—1<0, forallpe D"Ts(x),

o6



where R is the reachable set denoted by
R ={zeR" | Ts(x) < co}.
In particular, the equation hold at all differentiability points of Ts(z). Thus,
H(z,p) —1=0, forallzeR\S,pe DT (x).

It is well-known that Ts is the unique viscosity solution of (3.14)) in R\S satisfying
suitable boundary condition.

We want to study the properties of Ts under the following controllability as-
sumption:

(H3) For very R > 0, there exist up > 0 such that for all x € (B(0, R) N R)\S,

there is u, € U:
r —ms(x)

o —ms(@)]

f(z,uy) < —Ug. (3.15)

Proposition 3.5 Assume that system satisfies (H1)-(H3). Then, Tg is lo-
cally Lipschitz in R?. Moreover, for every R > 0, it holds

Ts(z) < Cg-dgs(x), forallz € (B(0,R) NR)\S
for some constant Cg.
Therefore, Ts(x) is differentiable almost everywhere in R\S and
H(z,VTs(x))—1=0, a.e x€R\S.
We now state the main result of this subsection (see in [?]).

Theorem 3.4 Assume that system satisfies (H1)-(H3) and the target S sat-
i1sfies a po-internal sphere condition, i.e., for every x € 35, there exists xo such that

x € B'(xg,po) CS. Then, Ts(+) is locally semiconcave in R\S.

Sketch of proof. (The method of middle point)
Fixing any € R\S, let h € R"™ be such that [x — h,z + h] C R\S, one needs to
show that

Ts(x + h) + Ts(x — h) — 2Tg(x) < C, - |h|*. (3.16)

Let u*(-) be an optimal control steering x to S in time Ts(z). We define
yi () =y (1), y(t) =y™ (1) and oy (1) =y ().
By the dynamics programming principle, we have that

Ts(x + h) + Ts(x — h) = 2T5(x) < T(y, (1) + Ty, (1) = 2T(y(t)).  (3.17)
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Moreover, observing that
i (8) + 5, (1) = 2y(t)] < C - L[ (3.18)
From ({3.17)), (3.18) and the locally Lipschitz continuity of Ts, we finally obtain that

va (1) + T'(y, (1)
2

Ts(a-+h)+Ts(w—h) ~2Ts(x) < Tlyi (0)+T(y; ()27 ( )+Cilhf*

Therefore, we only need to study the semiconcavity property of Ts(:) near to the
target S. We leave the rest part for the reader. O

3.2 External sphere condition
3.2.1 Sets with finite perimeter

Let us first recall some basic concepts from geometric measure theory.

Definition 3.3 Let A CR? and 0 < p < d. The p-dimensional Hausdorff measure
HP(A) is defined by HP(A) = élim+ HE(A), where
—0

HY(A) = w, - inf {i (diam(U;))* : A C U U;, diam(U;) < 6} :

and PI(E 4 1)

4 + o0
o 2 o 1t
WP - T’ F(p) - /0 tp 6 dt-

The constant w, is chosen so that HP(A) equals the Lebesgue measure LP(A) if p € N
and A is a subset of a p-dimensional subspace of RY.

Moreover,

e The Hausdorff dimension dimy(A) of A by setting:

dimy (A) := inf{d > 0: HI(A) = 0}.
o Let k € N, we say that A C R? is countably k-rectifiable if

A C NUGSZ-
i=1

where S; are suitable Lipschitz k-dimensional surfaces and N is a H*-negligible
set.

e We say A is k-rectifiable if it is countably k-rectifiable and H*(A) < oo, while
A is locally k-rectifiable if AN K is k-rectifiable for any compact set K C R
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Lemma 3.1 Given an open subset Q of R and a Lipschitz continuous function
fQ — R™ with Lipschitz rank L > 0, for every 0 < k < d, the estimate
HE(f(S)) < LFHF(S) holds for all S C €.

The concepts of functions of bounded variation and of sets with finite perimeter
will also be used:

Definition 3.4 Let Q C R? be open, and u € L'(Q). We say that u is a function
of bounded variation in Q (denoted by uw € BV (Q)) if the distributional derivative
of u is representable by a finite Radon measure in €2, i.e., if

/uago das:—/godDiuforallgOECfo(Q),izl,...,d
o O Q

for some Radon measure Du = (Dyu,...,Dgu). We denote by || Du|l the total
variation of the vector measure Du, i.e.

| Dul|(2) := sup {/Qu(x)divqﬁ(a:) dr: ¢ € CHQ,RY), |6l L) < 1} .

Accordingly, u € Li,.(Q) is a function of locally bounded variation in Q (denoted by

U € BVioe()) if u € BV (U) for every U C Q open and bounded with U C €.

Lemma 3.1 Let f € BV (a,b); then there exists a measurable set I C (a,b) such
that LY(I) =b—a and

IDfl(a,b) = [f(t) = f(s)|  foranyt,sel.

Definition 3.5 Let E C R? be L%-measurable, and let Q C R? be open. E has finite
perimeter in € if its characteristic function

ale) im {1, ifr€E,

0, otherwise,

has bounded variation in ), and we say that the perimeter of E in  is P(E,Q) =
|DxEell(R2). We say that E has perimeter locally finite in Q if P(E,U) < 400 for
every open bounded subset U of € with U C ().

Definition 3.6 Let u be a Radon measure on R?, and let M be the union of all
open sets U C RY such that u(U) = 0; the complement of M is called the support of
p and it is denoted by supp(p).

The following concept of normal vector was introduced by De Giorgi.
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Definition 3.7 Let Q) be a nonempty open subset of R? and E C R? be a set of
finite perimeter in €); we call reduced boundary of E in € the set O*E of all points
x € supp(||Dxgl|) NQ such that
. Dxgp(B(z,p)) dDxE
ve(r) ;= lim = x
2= 0 TDxeB(e o)~ ADxel )

exists in RY and satisfies ||vp(x)| = 1. The function —vg : *E — R is called the
De Giorgi outer normal to E in x.

Finally, the following measure-theoretic concepts will be used in our analysis.
Definition 3.8 Let E C R? be a Borel set. We set, for x € R and 0 < k < d,

H*(E N B(z,p))
; ,

0pp(x) = lim inf
R

where wy, is the k-dimensional Lebesque measure of the unit ball in R¥. It is well
known that for k = d the limit actually exists and is equal to 1 for L%-a.e. v € E.

Definition 3.9 Let E C R be L%-measurable. We define:

E%:={z eR?: §4(z) = 0}, the measure theoretic exterior of E;
E':={x cR%: 6%(x) =1}, the measure theoretic interior of E;
ouE =R\ (E°U EY), the measure theoretic boundary of E.

Concerning the relations among the above introduced concepts of boundary, we
recall the following (see Theorem 3.61, p. 158, in [?]).

Theorem 3.5 (De Giorgi-Federer) Let Q) be a nonempty open subset of R and
E CR? be a set of finite perimeter in ). Then

FENQC {zeR: §f(z)=1/2} COuE C IE,

and

i1 (Q \ (E°UOEU El)) —0.

In particular, E has density either 0, or %, orl atH¥ ' —a.e.xz € Q, and H 1 (O E\
OE)=0
We conclude this subsection with the following criterion for sets with finite

perimeter.

Theorem 3.6 (Federer) Let ) be a nonempty open subset of R and E C R? be
measurable. If H1(O(QN E)) < +oo then P(E,Q) < +o00.
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3.2.2 External sphere condition

We now introduce new concepts for sets which is associated with semiconcavity
concepts. Basing on these ones, we can extend to study the regularity of a class of
continuous functions which is applied to time optimal control.

Definition 3.10 Let Q C R? be closed and v € R?. We say that v is a proximal
normal vector to () at v € 0Q), denoted by v € Ng(x), iof there exists a constant
o > 0 such that

(w,y—x)<o-|ly—=x*, foralyecqQ. (3.19)

Equivalently v € Nj (z) if and only if there exists A > 0 such that mq(z+Av) = {z}.

Definition 3.11 Let Q@ C R? be closed and x € 0Q. The vector v € Nj(z) is
lvl

2p

realized by a ball of radius p if and only if (3.19) satisfies for o =

We are ready to give the main concept for this subsection.

Definition 3.12 Let Q C R? be closed and let 6(-) : 0Q — (0,00) be continuous.
We say that Q satisfies the 6(-)-external sphere condition if and only if for every
x € 0Q, there exists a vector v, # 0 such that v, € Nb(x) is realized by a ball of
radius 0(x), i.e.,

Uy 1 9

for ally € Q.

We will say that @) satisfies the pg-external sphere condition for a constant p, > 0
if p(-) = po. We are now going to study the main properties of sets which satisfies
an external sphere condition.

Theorem 3.7 (Locally finite perimeter) Let Q C R? be closed. Assuming that
Q satisfies the 0(-)-external sphere condition. Then, 0Q N O is finitely H -
rectifiable for any bounded, open set O. In particular, () has locally finite perimeter.

Proof. Since O is bounded, we have that O is compact. Therefore, there is a constant
po > 0 such that for every x € 0Q N O, there exists a unit vector v, € Ng(x) is
realized by a ball of radius py, i.e.,

1 2
Vg, Yy — ) < — |y — x|
ey = 2) < 5y =

for all y € Q.

1. By the compactness of S*!, we can find M; € N and a finite set {v1,...,vp; } C

R such that
My

1
St ¢ ;. +-B'(0,1
HH?’ (0,1)
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where S¥71 = {v € R? | |v| = 1} is the unit sphere with center 0. We partition 0Q
as

My
0Q = | JoQ; (3.20)
=1

where

0Q; = {$ € 0Q ‘ Vg — v < %}

One has first that u
QN0 = JoQ;n0. (3.21)
i=1
Moreover, for every x € 9Q; N O, it holds

(vi,y—z) < (Upy—a)+|v;—vg|-ly—x|, forallye@

for all y € Q. Therefore, for every z,y € 0Q; N O, we have that
1 1
ooy =)l < (5ol —ol+5) o=l (3:22)

2. We are now going to show that 9Q; N O is finitely H4 L rectifiable for all i €
{1,.., M}. Fixing any ¢ € {1, .., M1}, since 0Q; N O is compact, there exists My € N
and x4, ..., xpz, such that

Mo
0Q:n 0 C | J B'(xx.9),
k=1
where § = 2. Setting 0Q% = 0Q; N O N B'(x},6), we have that
Mo
0Q:in0 = Joqt. (3.23)
k=1

Moreover, by (3.22)) and the choice of §, we have that for every z,y € Q¥, it holds

1
[(vi,y — )| < 5 ly — z|.

Now, let v- be the subspace of R? which is orthogonal to v;. Let m;(+) be the
projection on v;-. From ([3.23)), one shows that
1

mi(y) — m(z)| > —= - |y — x|, forall 2,y € OQF.

|mi(y) ()|_\/§|y | y €0Q
Thus, m; : 0QF — v;* is injective. Hence, if we set AF = 771‘(8@@ C v;", the map
m ' AF - QF is Lipschitz with constant V2. Therefore, 9Q; N O is finitely H4'-
rectifiable. By recalling (3.21)), 0Q N O is finitely H? '-rectifiable.
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3. Finally, noting that H?1(A¥) < +o0, it implies that H41(0QF) < Z%del(/lf) <
+00. Recalling (3.21]), we obtain that @ N O has finite perimeter. The proof is com-
plete. O

Theorem 3.8 Let Q C R? be closed. Assuming that Q satisfies the 0(-)-external
sphere condition. For every k € {1,...,d — 1}, we denote by

Q" = {z € 0Q | dimy N} (z) > k}.
Then, OQF is countably He*-rectifiable.
Proof. The proof is based of the same technique of the previous theorem. O

Exercise 15. Proving the about theorem for k = 2.

We now recall the definition of Fréchet normal vector of a set.

Definition 3.13 Let Q C RY be closed and v € R?. We say that v is a Fréchet
normal vector to @ at x, denoted by v € Ng(x), if

lim sup <v : u> <0. (3.24)
YEQ— ly — |

Lemma 3.2 Let Q C R? be closed. Assuming that Q satisfies a 0(-)-external sphere
condition. Then, the map Ng() : 0Q = R is upper-semicontinuous, i.e.,

lim N (y) € Ng ().

Yy—x

Proposition 3.6 Let Q C R? be closed. Assuming that Q satisfies a 0(-)-external
sphere condition. Then, the set Q is smooth in 0Q", i.e., for every x € Q*, it holds

-
lim <vw , y-r > =0,
yeIQ—a ly — x|
where v, is the unique unit prorimal normal vector to Q) at x.

Proof. Assume by a contradiction, there exists a sequence {y,,} C 0Q converging to
x such that

<— %_I>25 (3.25)

v$7
’yn_x|

for a constant 6 > 0 and for all n € N. Let v, be the unit proximal normal vector
to @ at y, realized by a ball of radius 6(y,,). Since y, converges to z, there exists a
constant pg such that for every n, it holds

(Vs 2 —Yn) < po- |2z —ynl?, forall z€Q. (3.26)
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Therefore, v,, must converge to v,. On the other hand, from the above inequality,
we get in particularly that

(Vns @ = Yn) < po - |z — yal*.

T —Yn
<Una —y>§po-|$—yn!-
’$_yn‘

Since lim,, , v, = v, and lim, ., y, = =, we obtain that
T — Yn
<vx , Y > < 0.
|2 — Yl
This contradicts to (3.25)). The proof is complete. O

It implies that

3.2.3 External sphere condition and semiconcavity

In this subsection, we will make a the connection between external sphere condi-
tion and semiconcavity. Given any open set 2 in R" let f : Q@ — R be upper
semicontinuous function. Denote by

hypo(f) :={(z,8) | v € Q,8 < f(z)}
the hypograph of f. The following holds:

Theorem 3.9 The function f is locally semiconcave in Q if and only if f is locally
Lipschitz and hypo(f) satisfies a 6(-) external sphere condition.

Proof. 1. Assume that f is locally semiconcave. From proposition (3.2)), we have
that f is locally Lipschitz in 2. We now prove that hypo(f) satisfies a 6(-) external
sphere condition. For every x € Q, there exists v, € Df~(x) such that

F&) 5~ ey —2) < Zoly—al, forallye Bd)  (327)

where C, is a suitable constant and J, is a suitable constant such that B(x,d,) C .
It implies that

Cy

((=ve, 1), (y =2, f(y) = f(2))) < [y —af’, forally € B(x,d).

Therefore, there exists p, > 0 be such that

<%’(y—xaﬁ—f@>)> < oo (ly—aP +18 - f@)P)

Thus, (—v,, 1) € Nf;po(f)(a:, f(z)) is realized by a ball of radius 3 -. From here, one

can show that hypo(f) satisfies a 0(-) external sphere condition.

1

2. For the reversed side, we prefer to leave as an exercise. O
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Remark 3.2 Thereom is a particular case of theorem[3.8 Moreover, (ii)-(iv)
of proposition are consequences of proposition [3.6,

Let’s now study the regularity properties a class of continuous functions whose
hypograph satisfies an external sphere condition. From theorem [3.9] such class is
a generalization of the class of semiconcave functions and is applied to study the
regularity of the minimum time function under a weak controllability condition. We
denote by

F,(Q,R) ={f € C(QR) | hypo(f) satifies the p — extermal sphere condition}
where C(£2,R) is the class of continuous function from €2 to R.

Definition 3.14 For every x € Q, the unit vector v € S*! is a horizontal superdif-
ferential of f € F,(Q,R) at z, denoted by v € 0% f(x), if

(_070) € Nlirpo(f)(a:? f(fl?))

Remark 3.2 Let f : Q2 — R be continuous. If f is Lipschitz in a neighborhood of
x € () then the set 0 f(x) is empty.

Exercise. Prove the above Remark.

From the general function f € F,(€2,R), one may have that the set 0% f(z) is
non-empty at many points x € 2. We set

S ={zr e Q|0 f(z) + ).

Thanks to the p-external sphere condition, the following holds:
Proposition 3.7 Assuming that f € F,(2,R). Then, the set Sy is closed in €.

Sketch of the proof. 1. For every x € Sy, there exists v € S"! such that

(—v,0) € N}{;po(f) (x, f(x)) is realized by a ball of radius p, i.e.,

(—vy—a) <p-(ly—al’+ |8 f(2)f"), forallyeQ B<f(y.

Indeed, let (—w,0) € nypo(f)(x, f(z)), along the ray x(t) = z—t-w (t > 0), by using
Clarke’s density theorem, one can find a sequence z,, converge to x such that f is
differentiable at x,, and lim,,_,.. |Df(x,)| = +00. Moreover, since f is differentiable
at x, we have that (=D f(z,),1) € N}{;po(f) (@, f(z,)) realized by a ball of radius p.
Therefore, there exists a subsequence {z,, } converge to x such that

(=D f (T, 1)
1
niso [(—D f (T, 1)]

= (—v,0).

Thus, (—v,0) € nypo(f) (x, f(x)) is realized by a ball of radius p.
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2. Taking any z,, € Sy converging to x € 2. From the first step, there exists
v, € S such that (—wv,,0) € nypo(f) (pn, f(xy,)) is realized by a ball of radius p.

Hence, there exists (—v,,0) € NJ |

() (@, f(z)) is realized by a ball of radius p. [
In the followings, we would like to estimate the size of Sy by using the Hausdroff
measure.

Lemma 3.3 For any x € Sy such that N[ |

v € S"L, there is 6y = dg(x) > 0 such that

(f)(%f(x)) = Rt - (v,0) for some

IDfllsqes) = 272 6""2,  for all0 < 6 < & (3.28)

where Sq(x,6) :== {(y1,...,yn) ER": max lyi — x| < 8}, In particular, this would

imply that \ 1
IDfll sy =>272-0""2, forall0<d <. (3.29)
Proof. Without loss of generality we will assume that

r=0€Q, f(xr)=0 and Nﬁ;po(f)(0,0) =R"(ey,0).

For any 0 > 0, we define

3
R(5 = {y:(yla>yn)€SQ(075)15<y1<5}7
55 = {y: (ylv'-'vyd) € Sq(075) : _6<y1 < _5/2}

1. We first claim that there exist d; > 0 such that for every 6 € (0, ;) it holds

1
fly) < —5‘(5 for all y € Ry,

(3.30)
fly) >0 for all y € S;.
Indeed, for any y € R, we have
3
770 < {(e,0),(w,8)) < p-(lyll*+187)
whenever 3
10 (né*+ |B)?) for all B < f(y). (3.31)

In particular, this implies that
fly) <0 for all y € R;

and thus the first inequality of (3.30]) holds for § > 0 sufficiently small.
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Let us now prove the second inequality in (3.30). Assume by contradiction that
there exist sequences {Jx }r>1 and {yx}x>1 such that

o, — 07, yr € Ss, and flye) < 0.
By the continuity of f, we have that
I f(y) = f(0) = 0.
—00

On the other hand, let (vg, ay) € Né’;po(f) (yk, f(yx)) be a normal vector realized by
a ball of radius p and (v, ay) converges to (e, 0). For every 5 < 0 = f(0), it holds

<|(Uk7ak—) ,(0,8) - (yk,f(yk)>> < p- (llysll® +18 = Fw)?) -

(0, o)

By choosing 5 = f(yx), we obtain that
(e, =) < C - lyell®.
and a direct computation yields
)
Ek — o —erl[Vn o < {er, —yr) + (vk — €1, —yi) = (Uk, —yx) < Cn 6.

Dividing both sides by d; and passing to the limit as k — oo we obtain a contradic-
tion.

2. The Claim allows us to conclude: indeed, for any § < dp := min{dy, d2} and any
z € (—4,0)"" we get

N|=

1
\f (Ya, 2) — [y, 2)| > 55 for all y, € ]%5,5[,% €]—09,-9/2.

By virtue of Lemma for any z € (=4, )" there exist y,(z) €]36, [ and y(z) €
| = 6,—0/2[ such that

[SIE

IDf:N[(=0,0) = [f(4a(2), 2) = f(2), 2)| = 50

where f, := f(-,2z). We obtain

1
2

IDAISa00) = [ 1Dl d sl

o B AT
]—5,8[n—1

> (20)"7 - o7 =22,

where we have denoted by D., f the distributional derivative of f along e; and by
z+] — 0,0]-e; the line segment joining (—¢, z) and (4, 2). O

We are ready to prove the main result.
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Theorem 3.10 Let f be in F,(2,R). Then, H”_%(Sf)ﬂU is finite for every U C )
open and bounded.

Proof. We divide the set Sy into two sets:
Sy =8} + 5
where
8= {x € 85 | Nippop(@, () = R¥(0,0)},
83 = {a € 8¢ | dimpuVi o ) (@, f(2)) = 2}

Recalling , one can show that S7 is H"'-countably rectifiable. In particular,
H”’%(S]%) = 0. Hence, we only need to prove that 7—["’%(8}) N U is finite.

We can construct a covering of S} N U by setting:
min{dy(z), dist(U,002)/2}
10 '
Since B is a fine covering of S} NU, by using Vitali’s covering Theorem, there exists
a countable subset of pairwise disjoint balls B := {z; + ;B : i € N} C B such that

U BC D(mi + 5r,B"),
=1

BeB
which implies that {z; + 57;B" : i € N} is a covering of S} N U and

(@i +5rB") C (U + B") == W

1€EN

B::{(x+rﬁn): xGS}ﬂU,T<

for a suitable constant ¢ > 0 and thus W is an open bounded subset of 2.

|Df|(W) = |Df| (U(xz + 57"1'Bn)>
=1
> S Df|(i BT > S 278 TR > L H(S)),
=1

=1

N

and this implies that |Df|(W) < +oc0. Therefore, 7—["_%(8}) < +00. The proof is
complete. 0

Corollary 3.4 Let f be in F,(2,R). Then, L™(Sy) = 0.
We conclude this subsection with the following theorems.

Theorem 3.11 Let f be in F,(,R). Then, f is locally semiconcave in the open
set O\Sy. In particular, f is a.e. twice diffrentiable in ).

Excercise 18. Prove the above theorem.

Theorem 3.12 Let f : Q — R be continuous. Assuming that hypo(f) satisfies a
6(-)-external sphere condition. Then, f is locally semiconcave in the open set Q\S;.
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4 Introduction to scalar conservation laws
Let’s consider 1D Hamilton-Jacobi equation
Vi+H(V,) = 0  forall (¢,z) € [0,400[xR (4.1)

where the Hamiltonian H : R — R is smooth, convex and coercive, i.e.,

H
lim ﬁ = + o00.
p——+o00 ‘p'

It is known that the Cauchy problem (4.1)) with a Lipschitz initial data admits
a unique Lipschitz viscosity solution V. In particular, V is differentiable almost
everywhere and thus we can define

u(t,-) = Vi(t,z) fora.e. x€ R.

for every t > 0. Assume that u is smooth then it is a classical solution of the
following equation
w(t,x) + H'(u) - u,(t,z) = 0.

The above equation can be rewritten in the conservative form

u + [H(uw)], = 0. (4.2)

T

In one dimensional case, (4.1)) and (4.15]) have a strong connection. Indeed, one can
show that if V' is a viscosity solution of (4.1]) then u = V,, is an entropy admissible
solution of (4.15). The concept of entropy admissible solution will be introduced
later.

4.1 The method of characteristic and non-smooth solution

In this section, we would like to study the scalar conservation laws in one space
variable
u + [f(w)] = 0 (t,x) € [0. + oo[xR (4.3)

where
o f:R — Ris a given flux;
e u:[0,+00[xR — R is the conserved quantity.

To feel the above equation better, let us give a typical example on traffic flow for

3.
Example 1. (Traffic flow) On a single road, let’s denote by

e p(t,z) is the traffic density at the location x at time t.
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e v is the velocity of cars which depends on the traffic density such that

v = v(p) with < 0.

v
dp
e The flux

f(p) = p-vip)

describes the total number of cars crossing the location x at time t.

Giving two locations a and b on the road, the integral

b
/ p(t,x) dr = total number of cars in [a, b] at time ¢.

p = density of cars

We compute

This implies that

b
/ pe(t,x) + f(p(t,z)), doz = 0 for all a < b.

A PDE for traffic flow
pi(t,x) + f(p(t,z)). = 0. (4.4)

GOAL: Describe the traffic density at time t. In other words, one would like to fine
a solution to for a give initial desity pg.

Assume that f € C'(R) and u is a smooth solution of the Cauchy problem
Uy + f(u)x =0 )
(4.5)
u(z,0) = O(z)
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In this case, one can write the above equation as a quasilinear equation
wlt,x) + f(ult,2)) - wa(t,2) = 0.

The method of characteristic. Let x(t) be the solution of

#(t) = f(u(x(t),1)), z(0) = 5.

The curve (z(t),t) is called a characteristic curve.

Observe that

d .
Su(e(t)0) = w(t).t) + () - ualalt), )

= w(z(t),t) + f'(u(z(t),1)) - ua(2(t), ) = 0.

This implies that the function u is constant along the characteristic curve (x(t),t).
In particular, we have

u(z(t),t) = u(z(0),0) = @(5). (4.6)
Hence,
and it yields

z(t) = f(®(B)-t+8.
Recalling (4.6]), we obtain the general formula for the solution

uw(§+ fl(@(B)tt) = (B).
Remark. The method can be applied as long as the solution is smooth.

Example 2. Solve the Burger’s equation with initial condition

u2
Uy + <?>x = 0,

u(z,0) = =z

Answer. Since f'(u) = u and ®(z) = z, one has

f(®(P) = 6.

Thus,
w(B+Btt) = &(F) = 5.
Set x = 8+ (- t, we have




and this implies

for all (¢,z) € [0, 4+00[xR O

Example 3 (shock formation in Burgers’ equation) Consider the scalar con-
servation law (inviscid Burgers’ equation)

(%), =0 -

w(@,0) = a(z) = rlﬂ

Assume that u is smooth up to time 7" > 0. In this case, u must be constant along
the characteristic lines in the t-x plane:

ts (b + ta(z)) tat —
A u\x = X .
s 5 1+.T2

Moreover, these characteristic lines do not intersect before time 7. This implies that
the continuous map

}_>
v x+1—|—x2

is one-to-one for every ¢t < T. Thus, z — x + a2 is monotone increasing and
x

d t 2tz
— =1—-— > for all ¢ T R. 4.
o (x+1+x2) A+ 2P 2 0 orallt €[0,T],z € (4.8)

A direct computation yields

, 2tx /27

8
Thus, 1} admits a smooth solution up to time ¢t < \/—2_7 and then generates a

discontinuity at time t = — O

Niis

4.2 Entropy admissible weak solutions

The above example showed that a basic feature of nonlinear systems of the form ({4.3])
is that, even for smooth initial data, the solution of the Cauchy problem may develop
discontinuities in finite time. In order to prolong solution to after the formation
of discontinuity we must adopt a weak concept of solution in distributional senses
which allow the presence of discontinuities in the solution or in its space derivatives.
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4.2.1 Weak solutions

Definition 4.1 A function u € L*(]0, T[xR,R) is a weak solution of the scalar
conservation laws

w+ [f(w)]. =0,
if for every p € C1(]0, T[xR,R) with compact support, it holds

//]OT . [u(t, z)ps(t,x) + flu(t,x))p.(t, z)] dtde = 0. (4.9)

Remark 4.2 (Classical solution) A function u € C'(]0, T[xR,R) is a classical
solution of if and only if u is a weak solution of .

Proof. 1. Assume that u is a classical solution of (4.3). For a given ¢ €
C'(]J0, T[xR,R) with compact support, we consider the vector field

V(t>x) = (u(t?x) ) Qp(th)u f(u(t7x)) ) Qp(th))'

Let © C]0, T[xR be an open set such that supp(v) C €. By the divergence theorem,

we have
0 = / v-nds = // div vdtdx (4.10)
o0 10,T[xR

= // [ue + f(u)a] -godtd:v—i—// upr + f(u)p dtde  (4.11)
10,7[xR 10,T[xR

= // upr + f(u)pdtde (4.12)
10,T[xR

and this implies that u is a weak solution of (4.3]).

2. Assume that u is a weak solution but not a classical solution of (4.3)). Since u is
smooth, there exists a point (to,zo) such that

ui(to, wo) + [f (u(to, x0))]a # 0.

Without loss of generality, we will assume that the left hand side of the above
equation is positive. By the smoothness of u and f, it holds

ut(ta :L‘) + [f(u(t’ x))]m >0

for every (t, ) in Bs(to, o) C|0, T[xR for some 6 > 0 small. Consider a nonnegative
and nonzero function ¢ € C(]0, T[xR,R) with a compact support such that

0 (t, ) €]0, T[xR\Bs(to, o)
p(t,x) =
d835<t0,1'0) (t,[L‘) S B(s(to,l’o).
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Apply this test function to (4.9)), we obtain that

0 = //OT u(t, z)pe(t, x) + fu(t, x))e.(t, z)dtde
_ / /m Dt + Ft )] ot )b < 0,

and this yields a contradiction. O

Lemma 4.3 (Closure of set of weak solutions in L
of weak solutions of (4.5 (-) such that

Uy — U and f(uy) — f(u) in L. (4.13)

L) Let (up)n>1 be a sequence

Then the limit function u s also a weak solution of . Moreover, the same
conclusion holds if u,, — w in L{,_ and

u,(R) € K foralln>1
for some compact set K.

Proof. Assume that (4.13) holds. For every ¢ € C'(]0, T[xR,R) with compact
support, we has

// Uy + f(up)pedtde = //ungot—i-f(un)gpxdtdx
10,T[xR Q

// upy + f(u)p dtde = //ug@t+f(u)gpxdtdx
10,T[xR Q

for some open bounded set. Thus,

and

n—o0

Mmmﬁ//;qg%%+fwa@4—m%+fmw4ﬁm

n—o0

< @mwg//h%—m+uwm—ﬂwww)wwmu::o
Q
and this implies that

// upy + f(u)pedtde = lim // Unpr + f(un)pedtde = 0.
10,T[xR n—o0 10,T[xR
Therefore, u is a weak solution of (4.3]). O

Let us now derive a consequence of conservation form of (4.3). Given any time
t1,ts €]0, T, consider a domain

Q = {(t,2) [te[ti,to],(t) <z <7(t)}

for some ~; : [t1,t2] — R Lipschitz curves.
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Remark 4.4 If u is a classical solution of then

Y2(t2) Y2(t1)
/ u(ty, x)dx — / u(ty, z)dx
g/ gl

1(t2) 1(t1)
)

= /j%(t)u(tﬁz(t))—f(u(tﬁz(t)))dt—/t N(@u(t, 7 (t)) — f(ult, 2(t)))dt.

(4.14)

Proof. Applying the divergence theorem to the vector field

V(t,ZE) = (u<t7x)vf(u(t7$)))a

we find that
0 = ¢ Ldtdr = divvdtdr = -nd
//Qu%—[f(u)] tdx //Q ivvdtdx /an nds
to 2(t2)
= [Ta0ue o) - futn @) [ s
t 71 (t2)
to Y2 (t1)
- [ ettt n(e) - flutn®)de — [t o)
t1 1 (t1)
This implies . O

The formula (4.14) tell us that the variation of the quantity of u contained
between v, and v, at different times ¢; < t5 is given by the flow of the vector field
v through the two curves 7y, 7v,. It also holds for a week solution u provided that

(i) the map t — u(t,-) is continuous with values in Li, ;

(ii) the map x — u(t, x) is right continuous for all (t,x) €]0, T[XR, i.e.,

u(t,z) = lim u(t,y).

y—xt

Let’s now define a weak solution of a Cauchy problem

{ut + W), =0

u0) = ul) (4.15)

for a given ug € L (R).
Definition 4.5 A function u : [0,T] x R — R is a weak solution of if u is
a weak solution of in the strip |0, T[xR and the map t — u(t,-) is continuous

with values in Li. . for t € [0, T] with u(0,-) = u(-).
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The following holds:

Lemma 4.6 Ifu : [0,7] x R — R is a weak solution of then u is also a
solution of in the distributional sense, i.e., for every ¢ € C*(] — 1, T[xR,R)
with compact support, it holds

/A),ma [wpr + () ea] dtd:”/_oo up()p(0, x)dx = 0.

o0

Proof. Let p: R — [0, 1] be a smooth function with supp(p) CJ0, 1] and

For every ¢ > 0, denote by

o= to(h) wa aw = [

we set
o (t,x) = B.(t) - p(t, ) for all (¢,z) € [0,7] x R.

It is clear that supp(¢®) C]0, T[xR and

lim ©*(t,z) = ¢(t,x) for all (t,z) € [0,T] x R.
e—0+

Using the continuity of the map ¢ — u(t,-), we compute that

OZ./AHWMﬁ+fWMﬁﬁM
= /0 ) /_ : [upr + f(u)ps] - B°(t)dxdt + /D ) /_ Z wpp-(t)ddt.

Taking € to 0+, we then obtain that

/A)’TX]R [ups + f(u)p,] dtdz + /_OO wo(2)p(0, )dz = 0.

[e.9]

Therefore, u is a solution of (4.15)) in the distributional sense. O

4.2.2 Rankine-Hugoniot conditions

Let us first derive conditions which must be satisfied piecewise constant function

Ut.x) ut foe>\t (4.16)
L) = )
u” frz< At

for some u*, X € R, to be a weak solution of (4.3)).
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Lemma 4.7 The function U in 1s a weak solution of if any only if
Ao —u) = fut) — f(u). (4.17)

Proof. For every ¢ € C1(]0, —oo[xR) with supp(¢) C 2, we denote by

Of = {(t,x) e Qx> X}, QF = {(t,x) € Q| z < At}
Normal vectors to the line z = At are

nt = (A 1), n (—\,1).
Consider the vector field
v(t,r) = (ult,2) - p(t,2), f(ult,2)) - oL, 7).

By the divergence theorem, we obtain that

//Ugot—i-f Yppdadt = // dlvvdxdt—i-// div vdzdt
o+ -
= / V- n+ds—|—/ v-n ds
o0+ o9~

= /[)\u+ — f(u™)] - @(t, M)dt + /[)\ —u” + f(u7)] @t At)dt
- /[A. (" — ) — (fu) — fu))] - lt, M)k,
Therefore, U is a weak solution of if and only if
/ A (b —u) = (fu) — f)] - ot M)dE = 0
for all ¢ € C'(]0, —oo[xR) with compact support. It is equivalent to . O

Remark 4.8 The equation is famous Rankine-Hugoniot (RH) condition.

Example. Consider the Burgers’ equation

u2

Given two different state u™ # u~, we have

fh) = f) b

)\ — fr—
ut —u~ 2
The function .
ut if @ > utu ¢
u(t,z) = 2
(t,z) {u‘ if x < “Jr% -t

is a weak solution.

To derive (RH) condition for general weak solutions of (4.3)), let us introduce the
following:
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Definition 4.9 (Approximate jump) We say that a function u € L with value

in R has an approzimate jump discontinuity at a point (t,T) if there exists u™, A\ € R

such that setting
+ if >\t
Uto) = ¢ 7
u” if v <\t

there holds
.1 L
rlir&r—z//[wp’u(t+t,x+x)—U(t,x)‘dxdt = 0. (4.18)

In this case, u~ and u" are the left and the right approzimate limit of u at (t,T),
and X\ is the jump speed. Moreover, we say that uw is approximately continuous at

(t,x) if holds for a function U defined as in with u~ = u™.
We will show that (RH) condition is satisfied at any point of approximate jump
discontinuity of a weak solution of (4.3).

Proposition 4.9.1 Letu be a bounded weak solution of having an approximate
Jump discontinuity at a point (t,T), i.e., holds for some u*, X € R. Then, the
Rankine- Hugoniot equation holds.

Proof. 1. For any fixed 6 > 0 sufficiently small, one can easily check that the
rescaled function

W (t, ) = u(t+0t,7 + 0x)
is a weak solution of (4.3). Indeed, for any test function ¢ € C'(]0,00[xR) with
compact support, we find

/ / (4 3) + F(ult ) (t, ) dadt

_ﬁ.// [U(T,Z)Wt(T_E,Z;x)—Ff(( e (T;f’Z;ZL‘)}deZ

Z—$

0
Since the function ©f(7, 2) = ¢ (Tg , 22%) is smooth with compact support, one has

/ / (W, + f(u)p,|dedt = / / u(t,2)¢f + f(u(r, 2))pl] drdz = 0.

Hence, u? is a weak solution of .

2. We claim that u? converges to U in L - as § — 0. Indeed, for any R > 0, one

has that

/ / tx‘dxdt
= 5 /GR/ u(lt+7,T+ z) — U<9 0>‘d7dz

oR
= Rz-[ / / wlt+7,z+2)—U(rz2)|drdz

loc
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Taking 6 to 0+, we then obtain from (4.18]) that
R /R
lim / / W’ (t,2) = U(t,z)| dedt = 0.
0—0+ - RJ—-R

0

3. Since u is bounded, the sequence of function u” is also bounded. Thus, one

can apply Lemma to derive that U is a weak solution of (4.3) and Lemma m
implies the Rankine-Hugoniot condition. |

To conclude this part, we will provide necessary and sufficient conditions for a
piecewise Lipschitz continuous function to be a weak solution. Here, we say that u is
piecewise Lipschitz if u is in L and there exist a finite number of points P; = (t;, ;)
and finitely many disjoint Lipschitz-continuous curves v; :]a;, b;[— R such that

e For any point P outside the set [(U PYU (UJ 7(]aj,bj[))], u is Lipschitz

continuous in B(P,r) for some r > 0;

e Given a point @) € 7,(]a;, b;[) for some j, there exists a neighborhood V' of @
such that w is Lipschitz continuous in

Vi = V({e>y0)})  and Vo= V[ {z <)}
Assume that u is piecewise Lipscthiz, we can define
uf(t) = lim  u(t,z) and u; (t) = lim  wu(t,x).

x—y;(t)+ J x—; (t)—

Proposition 4.9.2 Let u: 2 — R be piecewise Lipschitz. Then, the followings are
equivalent

(i) w is a weak solution of ({.3);

(i) u satisfies the quasilinear equation
u+ f(wu, = 0 (4.19)
for almost every (t,z). Moreover, for every jump curve ; one has
5500 - [ (0) — u ()] = Flut () — £y () (4.20)
for almost every t €|a;, b;|.

Sketch of Proof. 1. Assume that u is a weak solution of (4.3). For any point
P out side the set [(U PYU (UJ v(Ja;, b; [))}, w is Lipschitz continuous in B(P,r)

79



for some r > 0. For every given ¢ € C! with supp(u) C B(P,r), one applies the
divergence theorem to get

0 = / /B e L] iz = 0

Here, we used also Rademacher’s theorem to say that div (u, f(u)) is defined almost
everywhere in B(P,r) and is in L. Thus, u satisfies (4.19).

On the other hand, one can use Proposition to show that (4.20]) satisfies at

any time ¢ where «; is differentiable.

2. Assume that u satisfies (ii). Let’s consider the case where the set (| J P;) is empty.
For every ¢ € C!, one apply the divergence theorem for v = (uy), f(u)¢) to obtain
that

0 = //Qwﬁf(umxdtdx = —//Q[uﬁ—f’(u)ux] - pdtdr
-2 / (35(8) - [ (8) = uy ()] = [ (1)) = £z ()] - (2t %(8))) dt.

Thus, u is a weak solution of (4.3)).

3. For the general case where the set (| J P;) is non-empty. For every given ¢ € C.,
one can construct a sequence of (¢™),>; C C} such that

P, ¢ supp(p,) for all i,n > 1

and lim, 1 [V, — Vol|lpr = 0. From the second step, one can obtain that

0 = //ngot—i-f(u)goxdtdx
= nl_lgloo {//Quwg—irf(u)gogdtdxl = nl_l)gloo [—/A[ut+f’(u)u$]~@dtdx
=3 [0 70 = 0] = 0 ) = a5 @) 2] = 0

The proof is complete. U

4.2.3 Admissible conditions

Consider the Burgers’ equation

2
ut—i-(?) = 0 with u(0,z) =
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For every « € [0, 1], the piecewise constant function

v
0 if < —t
1 xXr 2

+1
« ¢

ua(t,r) = S« if %tg:v <
1+«
2

1 if x>

is a weak solution of (4.3)). This shows that the concept of weak solution is not
sufficient to single out a unique solution whenever a strong discontinuity appears in
the solution.

Our goal is to supplement the notion of weak solution with further admissibility
conditions, that can be present in a weak solution, in order to achieve uniqueness
and continuous dependence on the initial data of the solutions.

1. Vanishing viscosity: We say that a weak solution u : © — R of (4.3)) is admis-
sible in the vanishing viscosity sense if there exists a sequence of smooth solutions
of the viscous parabolic approximation

ui + f(uf) - ul = eu (4.21)

x rxr

so that u® converges to u in L{  as e — 0+.

In general, it is very difficult to establish a-priori estimates on solutions to (4.3))
that allow to prove the convergence as ¢ — 0" and to characterize the correspond-
ing limit. However, one can deduce from the vanishing viscosity condition other
conditions that can be more easily verified in practice.

2. Entropy conditions: Motivated by the second principle of theorem dynamics
for the Euler equation of gas, we introduce the concept of entropy which characterize
irreversible processes (Kinetic energy dissipates when a shock appears: a part of it
is transformed into heat).

Definition 4.10 (Entropy-Entropy flux) We say that a pair of C' (or locally
Lipschitz) functions (n,q) : R — R is an entropy-entropy flux pair for if

¢ (u) = 7'(w)- f'(u) (4.22)
at every u where n,q and f are differentiable.

Notice that if u is a classical solution of (4.3) then u solves the equation

[n(w)]e + [g(w)]e = 0. (4.23)
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Remark 4.11 In this case, n(u) is conserved. However, when wu is discontinuous,
in general the quantity n(u) is not conserved.

Indeed, let’s consider the Burgers’ equation

u2
wi(g), =

and a pair of entropy-entropy flux

3
(n,q) = (u3, 1 u4) for all u € R.

The following function

u(t,z) =
0 if T >

N | =+

satisfies Rankine-Hugoniot condition and thus is a weak solution of (4.3]). However, u
is not a weak solution of (4.23)) since it does not satisfies Rankine-Hugoniot condition
at 0 and 1, i.e.,

O

Entropy admissible solution. Let u° be the smooth solution of (4.21)). It is easy
to see that u® is also a solution of the following equation

()] + [a(w)]e = &+ (()]aw —0"(u) - [u5]) -

In particular, if n is convex and smooth then one has that

[(u)]e + ()]s < € n(u)]es

Thus, for every non-negative test functions ¢ € C!, it holds

/ / Vor + q(uf)p,] dtdz > —e / / Vonudtds.

If u® converges to u in L{._ then by taking e to 0+, we get

// w)r + q(u)gps] dtdz > 0. (4.24)

This yields the following entropy admissible condition.
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Definition 4.12 A weak solution u of 1s entropy admassible if it satisfies the
imequality
(W)l + [g(u)l. < 0

in the distributional senses for every pair of convex entropy-entropy flux (n,q), i.e.
holds for every non-negative test functions ¢ € C..

A particular class of entropy-entropy flux pairs which is quite useful in analyzing the
behavior of entropy admissible weak solutions is given by the Kruzkhov’s entropy:
for each k € R, consider the functions

me(u) = Ju—kl, q(u) = sign(u—k) - (f(u) = f(k)).

It is easy to check that (nx(u), gx(u)) is locally Lipschitz and satisfies (4.22)) for every
u # k.

Proposition 4.12.1 A function u € L>(]0,T[xR) is an entropy admissible weak
solution of iff for every k € R it holds

/ /] o R e dids 2 0 (4.25)

for all o € CL(]0, T[xR, [0, +o0).

Sketch of proof. The proof is divided into several steps:

1. We show that if a function u € L*(]0, T[xR) satisfies (4.25)) for every k € R
then wu is a weak solution of (4.3)). Set M = |jul|o + 1, we have that

miw) = M—u and  qu(u) = F(M)— f(u).

For every ¢ € C1(]0, T[xR, [0, +0oc]), we have

/ / [ (W) s + qur(u)p,] dtde > 0
10,T[xR

and this implies that

/ / ur + F(u)pn] didz < / / Moy + F(M)ap,] dtdz = 0
]0,T[xR 10,T[xR

Similarly, since

[ stec uwpl i = o,
10,T[xR
one has

// [up + f(u)p,] dtde > —// (Moy + f(M).@,] dtde = 0.
10,T[xR ]0,T[xR
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Thus, for all ¢ € C1(]0, T[XR, [0, +00]), it holds

// [up: + f(u)p,] dtde = 0. (4.26)
10,T[xR

2. By an approximation argument, one can show that :4.26; also holds for all
¢ € Lip.(]0, T[XR, [0, 400[). Therefore, for a general p € C}(]0, T[xR,R), it holds

+
o = ot — ¢~ with ot = MT(’O € Lip.(]0, T[xR, [0, +oc]).

Since (4.26)) holds for both ¢ and ¢~, one then has that (4.26]) holds for ¢.

3. To conclude the proof, we show that (4.24)) is satisfied for every pair of convex
entropy-entropy flux (7, q). It is divided in two main steps:

e Show that (4.24)) every pair of convex entropy-entropy flux (n,q) where 7 is
convex piecewise affine entropy of the form

N
U—k‘i +U—k‘i
nw) = aotau+ ey LR
=1

(4.27)

for ag,a; € R and ¢; > 0.

e For every pair of convex entropy-entropy flux (7, ¢), one can approximate
uniformly (outside a set of measure zero) by a sequence of pair of convex
entropy-entropy flux (n,, ¢,) with 7, talking the form (4.27)).

O

Stability conditions. We wish to derive simple geometric conditions that can ob-
tained purely from stability considerations, without any reference to physical models.

Let us recall
+ if At
Ultr) = 4" 177
u” ifx <At
a weak solution of (4.3)), i.e.,

N G (0n)

ut —u~
Consider a slightly perturbed solution where the original shock joining two states u®
is split into two separated smaller shocks that join «* and v~ with an intermediate
state u® = au™ + (1 — a)u™ for some o €]0,1]. To ensure that the L'-distance
between the original solution and the perturbed one does not increase in time, we
need the following:

[speed of jump behind] > [speed of jump ahead]
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By Rankine-Hugoniot condition, one has

fu) = flu?) _ flut) = f(u®) (4.28)

ur — Uy~ ut — u®

The above condition is equivalent to

{f(ozu+ +(1—a)u™)

af(ut)+ (1 —a)f(u”) if uw <ut
flow + (1 - au”) < af 2

>
< af(ut)+(1—a)f(u) if u >ut

Proposition 4.12.2 The function U is an entropy admissible solution of iff

holds.

Sketch of the proof. 1. One can show that U is entropy admissible weak solution
of (4.3)) if any only if

A (e(u®) —me(u™)) > qu(u®) — qr(u™) for all k € R. (4.30)
Thus, to prove the proposition, we need to show that (4.30]) is verified if and only if
Aut —u”) = f(u") = flu7)

and (4.29) holds for all a € (0,1).
2. From the definition of (7, qx), we can be rewriten (4.30]) as

AMlu® =&l = u™ — k]
> [(f(u™) = f(k)) -sign(u® — k) = (f(u™) = f(k)) - sign(u™ — k)] . (4.31)
Observe that
e If k > max{u®,u~} then is equivalent to
A(um —ut) > flum) = fluh).
e If k < min{u*,u~} then is equivalent to
A(uh —u”) > f(u') = fu).

Thus, (4.31) is verified for all k €] — co, min{u™, v~ }] J[max{u",u™}, +o0[ if any
only if U satisfies the Rankine- Hugoniot condition.

3. To complete the proof, we need to show that (4.31)) is verified for all k£ €
Jmin{ut, u™}, max{u™, v }[ if any only if (4.29) is satisfied. Without loss of gener-
ality, we will assume that u~ < u™. For every k €] —u™,u™|,

Ac(ut tuT = 2k) = f(uh)+ fuT) = 2f(k)
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By Rankine-Hugoniot condition, the above inequality is equivalent to
[f(uh) = f)] - (" +um =2k) = [f(u?) + fu7) = 2f (k)] - (" —u7)
Writing k = au’ + (1 — a)u~, we have
(1=2a) [f(u®) = fu7)}[u"—u] > [f(u")+f(u")=2f(au"+(1—a)u)] - (u"—u7)
and this implies that
flou™ + (1 —a)u™) > af(u’)+ (1 —a)f(u).

The proof is complete. O

Rely on proposition 4.12.1) and the above proposition, one can show that

Theorem 4.13 Let u: [0,T[xR — R be piecewise Lipschitz. Then, the followings
are equivalent:

(i) u is entropy admissible weak solution.

(ii) u satisfies the quasilinear equation , and for every jump curve 7y; :
laj, bj[— R the (RH) condition holds, i.e.,

Y(t) - [uf (8) —ug (O] = fluf () = f(uf (1)),
together with the stability condition

fluf®) = fluz (1) Fluf(t) - fuj ()
ujo‘(t) —uy (1) - u?(t) - uj(t)

for all t €]aj, b;]

with u§ = au) + (1 — a)u; .

Let us remark that if we take a go to 0+ and 1— in (4.28) then we obtain the
following condition

flu®) = fu”)

ut —u~

) =

> f'(u”) (4.32)
which can be seen as another type of admissible condition :

Definition 4.14 We say that a weak solution of 18 admissible in the sense of
Laz if at every point (t,%) of approximate jump discontinuity with the left and right
states u~,u", and speed \, the Lax condition holds

Jr _ —

ut —u~
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In the case of convex flux f”(u) > 0, the stability condition (4.29)) and Lax condition

(4.33) are equivalent. Moreover, if f”(u) > 0 then the Lax condition is equivalent
to the condition:

u > uh.

In the case of general flux, the Lax condition does not implies the stability condition.

Theorem 4.15 Let f : R — R be locally Lipschitz continuous. Then there exists
a continuous semigroup S : [0, +oo[xL! — L' such that for each u € L' L, the
trajectory t — Sy(u) yields a unique bounded, entropy-admissible weak solution of

with u(0,-) = u. Moreover, the following properties hold:
(i) So(u) = a, Ss 0 Si(u) = Seit(u);

(16) 15¢(@) = Se(0)||lwr < N|u —of|wr;

(1ii) If u(z) < v for all x € R then

Si(u)(z) < Si(v)(x) for all (t,x) € [0, co[xR.
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