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1 Optimal control

1.1 Ordinary differential equations and control dynamics

1. A brief review on ordinary differential equations. The time evolution of
a system, whose state is described by a finite number of parameters, can be usually
modeled by an O.D.E.

ẋ(t) = f(x(t)), a.e. t ∈ [0,+∞[,

x(0) = x0,
(1.1)

where

• x : [0,+∞)→ Rn is the state variable depended on time t;

• f : Rn → Rn is the dynamics;

• x0 is the initial state.

Definition 1.1 (Absolutely continuous) A map x : [a, b]→ Rn is absolutely contin-
uous if for every ε, δ > 0 such that whenever a finite sequence of pairwise disjoint
sub-intervals (sk, tk) ⊂ [a, b] for k = 1, 2, ...n satisfies

n∑
k=1

|tk − sk| ≤ δ

then it holds
n∑
k=1

|x(tk)− x(sk)| ≤ ε .

Denote by

AC([a, b], Rn)
.
= {x : [a, b]→ Rn | x is absolutely continuous} .

Notice that every Lipschitz function x : [a, b] → Rn is in AC([a, b], Rn). However,
the converse of this statement is false in general. Indeed, the followings hold:

Lemma 1.2 For any x(·) ∈ AC([a, b], Rn), it holds that it derivative ẋ is almost
everywhere defined on [a, b] and

x(t) = x(t0) +

∫ t

t0

ẋ(s) ds for all t0, t ∈ [a, b] .
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Conversely, given a function g ∈ L1([a, b],Rn), the function y : [a, b]→ Rn which is
defined by

y(t) = y(a) +

∫ t

a

g(s) ds for all t ∈ [a, b]

belongs to AC([a, b], Rn) and

ẏ(t) = g(t) for a.e. t ∈ [a, b] .

Roughly speaking the lemma establishes that a map is absolutely continuous if and
only if it coincides with the integral of its derivative. Hence, one could provide an
alternative definition for absolutely continuous functions.

Definition 1.3 (Absolutely continuous) A map x : [a, b]→ Rn is absolutely contin-
uous if and only if x is differential almost everywhere on [a, b] and

ẋ(t) = x(a) +

∫ t

a

ẋ(s) ds .

In general, the continuity and the almost everywhere differentiability are not suffi-
cient to guarantee the absolute continuity. Indeed, it is well-known that one can

Problem 1. Construct a (uniformly) continuous and strictly increasing function
z : [a, b]→ R such that z is differentiable and equal to zero almost everywhere.

Thus, z(b)−z(a) > 0 =

∫ b

a

ż(s) ds and it yields that z is not absolutely continuous.

Definition 1.4 (Carathéodory solution) Given a vector field f : Rn → Rn, a
map x : [a, b]→ Rn is a Carathéodory solution to the ordinary differential equation

ẋ(t) = f(x(t))

on [a, b] if x(·) is absolutely continuous and

x(t) = x(a) +

∫ t

a

f(x(s)) ds for all t ∈ [a, b] .

It is clear that if x(·) is a Carathéodory solution of the ODE (1.1) then all a ≤ t1 <
t2 ≤ b, it holds

x(t2) = x(t1) +

∫ t2

t1

f(x(s)) ds .

In particular, it yields the semigroup property

x(t+ s) = x(t) ◦ x(s) for all a ≤ s, t ≤ s+ t ≤ b

where x(t) ◦ x(s) is the value of the solution of the ODE (1.1) with initial data x(s)
at time t.
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Theorem 1.5 (Existence result) Assume that the dynamics f is uniformly Lips-
chitz, i.e.,

‖f(y)− f(x)‖ ≤ Lf · ‖y − x‖ for all x, y ∈ Rn

for some constant Lf > 0. For any initial data x0 ∈ Rn, the ODE (1.1) admits a
Carathéodory solution.

Let us now introduce an useful lemma which allows to derive the stability result for
the ODE (1.1).

Lemma 1.6 (Gronwall’s inequality) Let z : [0, T ] → [0,+∞) be an absolutely con-
tinuously function such that

ż(t) ≤ α(t) · z(t) + β(t) for a.e. t ∈ [0, T ] .

and z(0) = z0. Then it holds

z(t) = z0 · e
∫ t
0 α(s) ds +

∫ t

0

β(s) · e
∫ t
s a(τ) dτ ds .

As a consequence of the above lemma, we have the following stability results of the
ODE (1.1).

Proposition 1.6.1 Under the Lipschitz continuity assumption on f in theorem
1.27, the followings hold:

(i). (Boundedness) For any given initial data x0, let yx0(t) be the solution of (1.1).
Then

‖yx0(t)‖ ≤ ‖x0‖+ ‖f(x0)‖ · eLf t . (1.2)

(ii) (Stability) Given any x1, x2 ∈ R, it holds

‖yx2(t)− yx1(t)‖ ≤ eLf t · ‖x2 − x1‖ (1.3)

for all t > 0. In particular, the ODE (1.1) admits a unique solution.

Proof. (i). For any t > 0, it holds

d

dt
‖yx0(t)− x0‖ ≤ ‖f(yx0(t))‖ ≤ ‖f(x0)‖+ Lf · ‖yx0(t)− x0‖.

Thus, the Gronwall’s inequality implies that

‖yx0(t)− x0‖ ≤ ‖f(x0)‖ · e
Lf ·t

Lf

and this yields (1.2)

‖yx0(t)‖ ≤ ‖x0‖+ ‖f(x0)‖ · e
Lf ·t

Lf
.
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(ii). Similarly, one estimates

d

dt
‖yx2(t)− yx1(t)‖ ≤ ‖f(yx2(t))− f(yx1(t))‖ ≤ Lf · ‖yx2(t)− yx1(t)‖

and the Gronwall’s inequality yields (1.3).

The first order tangent vector. Let x(t) be the solution of the ODE

ẋ(t) = f(x(t))

Consider a family of nearby solutions, says t → xε(t). Assume that a given time
t = 0, one has

v0 = lim
ε→0

xε(0)− x(0)

ε
.

Proposition 1.6.2 In addition to the uniformly Lipschitz continuous on f , we as-
sume that f is also continuously differentiable. Then the first order tangent vector

v(t)
.
= lim

ε→0

xε(t)− x(t)

ε

is well defined for all t ∈ [0, T ]. Morever, v(t) is the solution of the affine ODE

v̇(t) = Df(x(t)) · v(t), v(0) = v0 . (1.4)

Using the Laudau notation, we can write

xε(t) = x(t) + ε · v(t) + o(ε)

where o(ε) denotes an infinitesimal of higher order with respect to ε. Therefore, one
can formally write

ẋε(t) = ẋ(t) + ε · v̇(t) + o(ε) = f(xε(t)) = ẋ(t) +Df(x(t)) · εv(t) + o(ε) .

Adjoint system. It is useful to consider the adjoint system of (1.4)

ṗ(t) = − p(t)Df(x(t)) (1.5)

where p(t) is a row vector. A direct computation yields

d

dt
[p(t) · v(t)] = ṗ(t) · v(t) + p(t) · v̇(t)

= −p(t) ·Df(x(t))v(t) + p(t)Df(x(t))v(t) = 0 .

This implies that then the product p(t) · v(t) is constant in time.

2. Control systems. In some cases, the system can be in influenced also by
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the external input of a controller. An appropriate model is then provided by a
control system, having the form

ẋ(t) = f(x, u),

x(0) = x0 .
(1.6)

Here x0 ∈ Rn is the initial state and

• f : Rn × U → Rn is the dynamics of the control system

• U ⊂ Rm is the control set

• u : [0,+∞[→ U is a control function.

Remark. If we set

F (x)
.
= f(x, U) = {f(x, u) | u ∈ U} ,

then the control system (1.6) can be rewritten as an differential inclusion

ẋ ∈ F (x), x(0) = x0 .

There are two types of control:

• If u = u(t) is assigned as a function of time, we say that u is an open-loop
control.

• If u = u(x) is assigned as a functions of state variable u, we say that u is a
closed-loop (feedback) control,

Let us first consider the open-loop controls. We will write

f(x, u) =

f1(x, u)
...

fn(x, u)

 and x(t) =

x
1(t)
...

xn(t)

 .

The set of admissible controls is denoted by

Uad :=
{
u : [0,+∞[→ U | u is measurable

}
, (1.7)

we will also write that

u(t) =

u1(t)
...

um(t)

 .

Differently from ODE (1.1), a solution of the control system (1.6) depends on initial
state x0 and the choice of admissible control u.
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Definition 1.1 Given any x0 ∈ Rn and u ∈ Uad, a solution of (1.6) denoted by
yx0,u(·) is called a trajectory of (1.6) starting from x0 associated with the control u.

We shall assume that our control system satisfies the following standard hypotheses:

STANDARD HYPOTHESES (F)

(F1). The control set U is compact.

(F2). The function f is continuous. Moreover, there exists a constant K1 > 0 such
that

|f(y, u)− f(x, u)| ≤ Lf · |y − x|, for all x, y ∈ Rn, u ∈ U.

The following holds:

Theorem 1.7 Under assumption (F), given any initial data x0 and admissible con-
trol u ∈ Uad, the ODE (1.6) admits a unique absolute continuous solution denote by
yx0,u such that

yx0,u(t) = x0 +

∫ t

0

f(yx0,u(s), u(s)) ds for all t ∈ [0,+∞) .

Moreover, the followings hold:

(i) (Boundedness) For any x0 ∈ Rn and t > 0,

‖yx0,u(t)‖ ≤ eLf ·t · ‖x0‖+
eLf ·t − 1

Lf
·M

with M = maxu∈U |f(0, u)|.

(ii) (Stability) For any x1, x2 ∈ Rn and t > 0, the distance between yx1,u(t) and
yx2,u(t)

‖yx1,u(t)− yx2,u(t)‖ ≤ eLf ·t · ‖x1 − x2‖.

Let’s introduce the cost function P : Rn×Uad×AC([0,∞),Rn)→ R which depends
on an initial data x0 ∈ Rn and an admissible control u ∈ Uad.

Optimization problem: Our goal is to seek for an optimal control u∗ ∈ Uad
which minimizes the cost function among all admissible controls, i.e.,

P
[
x0, u

∗, yx0,u
∗] ≤ P [x0, u, y

x0,u] u ∈ Uad .

The problem of

Minimizingu∈Uad P [x0, u] subject to the control system (1.6) .

is called an optimal control problem.

6



1.2 Optimal control problems.

1.2.1 Standard problems

1. The minimum time problem. The aim of this problem is to minimize the
amount of time for the system to reach a given target set T which is closed subset
of Rn. More precisely, for a fixed initial data x0 ∈ Rn\T , denote by

θ(x0, u)
.
= min{t ≥ 0 | yx0,u ∈ T }

Of course, θ(x0, u) is in [0,+∞], and θ(x0, u) is the time taken for the trajectory
yx0,u to reach the target T , provided θ(x0, u) < +∞. The minimum time T (x0) to
reach the target T for x0 is defined by

T (x0) = inf
u∈Uad

θ(x0, u) . (1.8)

In general, T (x0) can be +∞, i.e., the point x0 can not reach to the target T from
the dynamics (1.6). For a fixed time t > 0, denote by

R(t) = {x ∈ R | T (x) ≤ t}

the set of point can reach the target before time t. It is important to consider the
reachable set

R =
⋃
t>0

R(t)

the set of point which can reach to the target in finite time.

Some basic questions:

• (Controllability) Given a point x0 ∈ Rn\T , does x0 belong to R?

• (Existence and uniquiness) Given x0 ∈ R, is there an admissible control
u∗ such that

θ(x0, u) = T (x0).

If the above equality hold, u∗ is called an optimal control steering x0 to the
target T in a minimum amount of time. Is u∗ unique?

• (Necessary conditions) Can we construct optimal controls by deriving a set
of necessary conditions and compute T?

• (Regularity theory) Study the regularity properties of the minimum time
function T .

Let us consider a simple example.

Example 1: (Rocket railroad car) Imagine a railroad car powered by rocket engines
on each side. We introduce the variables
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• x(t) is the position of the rocket railroad car on the train track at time t

• v(t) is the velocity of the rocket rail road car at time t

• F (t) is the force from the rocket engines at time t

where −1 ≤ F (t) ≤ 1 and the sign of F (t) depends on which engine is firing.

Our goal: is to construct F (·) in order to drive the rocket railroad car to the
origin 0 with zero velocity in a minimum amount of time.

Mathematical model: Assuming that the rocket railroad car has mass m, the
motion of law is

ẍ(t) =
F (t)

m
:= u(t) (1.9)

where u(·) is understood as a control function. For simplicity, we will also assume
that m = 1. The motion equation of the rocket car is

ẍ(t) = u(t),

x(0) = x0 and v(0) = v0

(1.10)

where u(·) ∈ U = [−1, 1], x0 is the position of the rocket railroad car at time 0 and
v0 is the velocity of the rocket railroad car at x0. By setting

z(t) =

x(t)

v(t)

 , A =

0 1

0 0

 and b =

0

1

 (1.11)

we can rewrite (1.10) as the first order control system:
ż(t) = A · z(t) + u(t) · b

z(0) = z0
.
= (x0, v0)T .

(1.12)

The cost function is

P [z0, u(·)] =

∫ θ(z0,u)

0

1 ds = θ

where θ(z, u) is the first time such that z(θ) = (0, 0)T .
The goal is to find u∗ ∈ Uad such that

P [z0, u
∗(·)] ≤ P [z0, u(·)], for all u ∈ Uad.

In this case, P [z, u∗(·)] = T (z0) is the minimum time needed to stear z0 to (0, 0)T .

Problem 2. Prove that the set R(t) is convex and compact.
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Problem 3. Identify the reachable set R .

Problem 4. Given a point x ∈ R2\{0}, is there a unique optimal control?

Problem 5. Compute the minimum time function T .

2. The finite time horizon problem: Bolza and Mayer problems. Given
x0 ∈ Rn and control u ∈ Uad, consider the cost functional

P [x0, u, T ]
.
=

∫ T

0

r(u(t), yx0,u(t)) dt+ g(yx0,u(T )) (1.13)

where

• r : U × Rn → R is the running cost;

• g : Rn → R is the terminal cost;

• T is the terminal time.

The problem of

minimizingu∈Uad P [x0, u, T ] subjects to the system (1.6) (BP)

is called a Bolza problem.

In particular, if the running cost r ≡ 0 then (BP) becomes

minimizingu∈Uad g(yx0,u(T )) subjects to the system (1.6) (MP)

and is called a Mayer problem.

Problem 6. Can one rewrite a Bolza problem as a Mayer problem?

Goal: For an given initial data x0 and a terminal time T > 0, a natural question
is to seek for an optimal control u∗ which minimizes the cost function P [x0, u, T ].

If an optimal control u∗ does exist, the value function is denoted by

V (T, x0)
.
= inf

u∈Uad
P [x0, u, T ] = P [x0, u

∗, T ] .

Example 2: (A classical problem in calculus of variations) Consider a linear control
system 

ẋ(t) = u(t) a.e. t ∈ [0, T ]

x(0) = x̄,
(1.14)
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where x : [0,+∞[→ Rn and u(·) ∈ Uad. Here, the admissible control UTad is denoted
by

UTad =
{
u : [0, T ]→ Rn | u ∈ L1

loc([0, T ],Rn)
}
. (1.15)

In this case, the set of admissible trajectories is

AT,x̄ =
{
y(·) ∈ AC([0, T ],Rn) | y(0) = x̄

}
which is the set of all absolutely continuous functions defined on the interval [0, T ]
with initial state x̄.

Let us now introduce

L : Rn → R× Rn and g : Rn → R (1.16)

are respectively the continuous running cost (Lagrangian) and the continuous ter-
minal cost. A classical problem in calculus of variations

Minimizeu∈UTad

∫ T

0

L(yu,x̄(t), u(t)) dt+ g(yu,x̄(T )) . (1.17)

Example 3: (Minimal surfaces of revolution) Consider in the space R3 the
two circles 

z2 + y2 = R1

x = a1

and


z2 + y2 = R2

x = a2

(1.18)

where a1 < a2. Given Let Aad be the set of functions ξ : [a1, a2] → R3 such that

ξ(x) =

 x
0

r(x)

 where r(·) : [a1, a2] → R+ is smooth and satisfies that r(a1) = R1

and r(a2) = R2. For each ξ ∈ Aad, we denote by

Sξ =
{

(x, y, z)T
∣∣∣ a1 ≤ x ≤ a2, z

2 + y2 = r(x)
}

(1.19)

the surface of revolution generated by ξ. The area of Sξ is

Area(Sξ) = 2π

∫ a2

a1

r(x)
√
r′(x)2 + 1 dx. (1.20)

Our goal: Finding ξ∗(·) ∈ Aad such that

Area(Sξ∗) ≤ Area(Sξ) for all ξ(·) ∈ Aad. (1.21)

We can reformulate the problem into a control problem. Indeed, we consider the
constant control system 

ṙ(t) = u(t),

r(a1) = R1,
(1.22)
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where u(·) ∈ Uad which is denoted by

Uad =
{
u ∈ C1([a1, a2],R+)

∣∣∣ ∫ a2

a1

u(s)ds = R2 −R1

}
. (1.23)

The payoff functional is

P [u(·)] = 2π

∫ R2

R1

r(s)
√

1 + u2(s) ds. (1.24)

The goal is to find u∗(·) ∈ Uad such that

P [u∗(·)] ≤ P [u(·)] for all u ∈ Uad. (1.25)

3. The infinite horizon problem with discount. Given x0 ∈ Rn and control
u ∈ Uad, consider the infinite horizon cost functional with discount

J [x0, u] =

∫ +∞

0

e−λ·t · L(yx0,u(t), u(t)) dt (1.26)

where λ > 0 is a given discount rate and L is the running cost fulfills the following
assumption:

(L1) The function L : Rn × U → R continuous bounded and continuous, more
precisely there exist a modulus ωL(·) and a constant ML such that

|L(x, u)− L(y, u)| ≤ ωL(|x− y|) and |L(x, u)| ≤ ML

for all x, y ∈ Rn and u ∈ U .

Our goal is seek for an optimal control u∗ which minimizes the cost functional. If
u∗ does exists, one needs to calculate the value function

V (x0)
.
= minimizeu∈Uad J [x, u] .

Example 4. (Optimal harvesting of renewable natural resources) Denote by x(t)
the size of fish population at time t, subject to harvesting. This evolves according
to the ODE

ẋ = αx(M − x)− bxu, u(t) ∈ [0, umax] .

Here ẋ(t) = d
dt
x(t) is the derivative with respect to time t and

• M describes the maximum population sustained by the habitat;

• α is is a reproduction rate;

• b measures the efficiency the harvesting effort;
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• The control u(t) accounts for the fishing effort, while the product bx(t)u(t) is
the actual catch at time t.

We consider the optimal harvesting problem in infinite time horizon, exponentially
discounted:

maximize :

∫ ∞
0

e−γ·t · [px(t)− cu(t)] dt

where p is the market price of fish and c is the unitary cost of the harvesting effort.

Main questions:

• What is the best harvesting strategy? More precisely, how should the fishing
effort u = u(x) depend on the current population size x, in order to achieve
the maximum profit, over time?

• Study what happens to the population size as t → ∞, when this optimal har-
vesting policy is implemented, How does this limit depend on the coefficients
α, γ and c?

Problem 8. Can one remove some of the constants by rescaling variables. Namely,
assume

y = c1x, τ = c2t and v = c3u .

Rewrite the ODE in terms of the new variables. Choose the constants c1, c2, c3 so
that the new equations become

d

dτ
y = y(1− y)− yv, v ∈ [0, vmax] = [0, c3umax] .

Basing on the reformulated problem, one needs to

Problem 9. Write an ODE satisfied by the value function

V (y) = [maximum payoff that can be achieved when the initial population is x(0) = y]

and solves it.

1.2.2 Non-standard problems

1. A producer vs. consumer games. Consider a game between a producer and
a consumer. In this model, the following variables are all functions of time t > 0

• R = amount of product still unsold, held in reserve,

• p = unit price,
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• u1 = production rate,

• u2 = consumption rate.

The evolution equations are 
Ṙ = u1 − u2 ,

ṗ = − ln
(
R
R0

)
p .

(1.27)

The first equation simply says that the amount of product in stock changes depend-
ing of the difference between production and consumption. By the second equation,
there is a level R0 of reserves which is considered “appropriate”. If the reserves
fall below R0, shortages are predicted and the price increases. If the reserves in-
crease above R0, a glut is expected and the price decreases The payoff functionals,
in infinite time horizon, are

J1 =

∫ ∞
0

e−γt[pu2 − c(u1)] dt ,

J2 =

∫ ∞
0

e−γt[ϕ(u2)− pu2] dt .

(1.28)

What is the optimal solution to the problem? This question leads to the concept of
Nash equilibrium and a study of system of PDEs.

2. Optimal debt management. An accurate description of the debt structure
would require a knowledge of the size of the various loans, the interest rate charged
on each loan, and the expiration date of each loan. To simply the models, let us
denote by

• x(t) = debt size

• u(t) ∈ [0, 1] = payment rate, as a fraction of the income

• L(u) = = cost to the borrower for implementing the control

• B = bankruptcy cost to the borrower.

Given initial debt x̄, the borrower seeks to minimize

J [u, x̄]
.
= E

[∫ TB

0

e−rtL(u(t)) dt+B e−rTB
]

= [cost of servicing the debt] + [bankruptcy cost].

When an investor buy a bond of unit nominal value at time t = 0, he receives a
stream of payments for all future times. The repayment rate is

ψ(t) = (λ+ r) · e−λt
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• λ = the rate at which the borrower pays back the principal

• r = the interest payed on bonds.

If bankruptcy does not occur, the total payoff the lender, exponentially discounted
in time is

Ψ =

∫ ∞
0

e−rt(r + λ)e−λt dt = 1.

However, if the borrower goes bankrupt at time TB < +∞, a lender recover

θ(x(TB)) ∈ [0, 1) = fraction of his outstanding capital .

The payoff to an investor will be

Ψ =

∫ TB

0

(r + λ)e−(r+λ)tdt+ e−(r+λ)TBθ(x(TB))) .

If θ < 1 then Ψ < 1. To offset this possible loss, the investor buys a bond at the
discounted price p ∈ [0, 1]. Assuming that lenders are risk-neutral, we have

p = E
[ ∫ TB

0

(r + λ)e−(r+λ)tdt+ e−(r+λ)TBθ(x(TB)))
]
.

Thus, the optimization problem for the borrower is

Minimize J [u, x̄]
.
=

[∫ TB

0

e−rtL(u(t)) dt+B e−rTB
]

subject to

ẋ(t) = − λ · x(t) +
(λ+ r) · x− u(t)

p(t)

where the discounted bond price is

p(t) = E

[∫ TB

t

(λ+ r)e−(λ+r)(τ−t)dτ + e−(r+λ)(TB−t)θ(x(TB)))

]
and TB is random bankruptcy time.

Model 1: Given ρ(x) the instantaneous bankruptcy risk, TB is defined as

Prob {TB ∈ [t, t+ ε] | TB > t} = ρ(x(t)) · ε+ o(ε) .

and the yearly income is fixed.

Model 2: The yearly income Y (t) of the borrower is governed by a stochastic
evolution equation

dY (t) = µY (t) dt+ σY (t) dW.
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There is not bankruptcy risk ρ(x) but the borrower can declare bankruptcy at any
time he likes.

3. Optimal decision problem on traffic flows. Consider n groups of drivers
with different origins and destinations, and different costs. Drivers in the k-th group
depart from Ad(k) and arrive to Aa(k) can use different path Γ1,Γ2, ... to reach to
destination. More precisely, let us denote by

a(1)

A

A

d(1)

• Gk = total number of drivers in the group k for k = 1, 2, ..., n;

• Γp = viable path to reach destination, for p = 1, 2, ...N ;

• t→ uk,p(t) = departure rate of k-drivers traveling along the path Γp;

• The set of departure rates {uk,p} is is admissible if

uk,p(t) ≥ 0,
∑
p

∫ ∞
−∞

uk,p(t) dt = Gk k = 1, 2, ..., n .

For any k ∈ {1, 2, . . . , n}, a driver β in the k-th group is

ϕk(τ
d(β)) + ψ(τa(β))

where τ d(β) and τa(β) are departure and arrival time of driver β, respectively.

Goal: Seeks for a globally optimal admissible family {ūk,p} of departure rates
which minimizes the sum of the total costs of all drivers

J(ū) =
∑
k,p

∫
(ϕk(t) + ψk(τp(t))) dt.

15



1.3 Existence of optimal open-loop control

This subsection aims to establish an existence result of optimal open-loop control a
classical problem in calculus of variation. Given (T, x̄) ∈ [0,+∞[×Rn, we wants to

Minimizeu∈UTadP [u] =

∫ T

0

L(x(t), u(t)) dt+ g(x(T )) (P)

subject to 
ẋ(t) = u(t) a.e. t ∈ [0, T ]

x(0) = x̄.

Here, we shall assume that the following standard assumptions

(L1) For any R > 0, there exists LR > 0 such that

|L(y, u)− L(x, u)| ≤ LR · |y − x|, for all u ∈ Rn, x, y ∈ B(0, R).

(L2) There exists l0 > 0 and a function ` : [0,∞[→ [0,∞[ with lim
r→∞

`(r)

r
= +∞

and such that

L(x, u) ≥ `(|u|)− `0, for all x ∈ Rn, u ∈ Rn.

(L3) For every x, the function L(x, ·) is convex.

Theorem 1.1 Under the standard assumptions (L1)-(L3), assume that g is locally
Lipschitz and bounded below the for every x̄ ∈ Rn. Then (P) admits an bounded
optimal control u∗(·), i.e.,

min
u∈Uad

P [u(·)] = P [u∗(·)].

Proof. It is divided into several steps:

1. Let us set
−∞ < λ := inf

u∈∈UTad
P [u] < +∞

and consider a sequence of control functions uk(·) ∈ UTad such that limk→∞ P [uk] = λ.
Thus, there exists k0 > 0 such that

P [uk] ≤ λ+ 1 for all k ≥ k0

and (L2) yields

λ+ 1 ≥
∫ T

0

`(uk(t))dt− `0T + inf
x∈Rn

g(x).
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Since g is bounded below, one has∫ T

0

`(uk(t))dt ≤ λ+ 1 + `0T − inf
x∈Rn

g(x) := C0 < +∞.

for all k ≥ k0. On the other hand recalling that lim
r→∞

`(r)

r
= +∞, we have

`(r) ≥ r for all r ≥M0.

for some M0 > 0. Thus, it holds

‖uk‖L1([0,T ]) ≤ M0 · T +

∫ T

0

`(uk(t))dt ≤ M0 · T + C0 := C1.

for any k ≥ k0.

2. Now, let u ∈ L1([0, T ],Rn) be such that ‖u‖L1 ≤ C1. For any α > 0, we define

uα(s) =


u(s) if |u(s)| ≤ α,

0 if |u(s)| > α.

Observe that

|yx̄,uα(s)|, |yx̄,u(s)| ≤ R1 := |x̄|+ C1 for all s ∈ [0, T ],

by setting Iα = {s ∈ [0, T ] | |u(s)| > α}, we estimate

P [uα(·)]− P [u(·)]

=

∫ T

0

L(yx̄,u
α

(s), uα(s))− L(yx̄,u(s), u(s))ds+ g(yx̄,u
α

(T ))− g(yx̄,u(T ))

≤
(
LR1T + gR1

)
·
∫ T

0

|uα(s)− u(s)|ds+

∫
Iα

L(yx̄,u(s), 0)− L(yx̄,u(s), u(s))ds

≤
(
LR1T + gR1

)
·
∫
Iα

|u(s)|ds+ (KR1 + `0) · |Iα| −
∫
Iα

`(|u(s)|)ds

where gR1 is a Lipschitz constant of g in B(0, R1) and KR1 = sup|y|≤R1
L(y, 0). If

α > 1 then

P [uα(·)]− P [u(·)] ≤ ΓT ·
∫
Iα

|u(s)|ds−
∫
Iα

`(|u(s)|)ds

with ΓT := LR1T + gR1 +KR1 + `0. Again, from (L2), there exists αT > 1 such that
`(r) ≥ ΓT · r for all r ≥ αT . Thus,

P [uαT (·)]− P [u(·)] ≤ 0.

17



3. For every k ≥ k0, we define

vk(s) = uαTk (s) =


uk(s) if |uk(s)| ≤ αT

0 if |u(s)| > α
for all s ∈ [0, T ].

We then have

sup
k≥k0

‖vk‖L∞([0,T ]) ≤ αT and lim
k→∞

P [vk] = λ.

Since the sequence {vk}k≥k0 is bounded in L∞([0, T ],Rn), one can construct a
subsequence {wk}k≥1 ⊆ {vk}k≥k0 such that {wk}k≥1 converges weakly to w in
L∞([0, T ],Rn), i.e.,

lim
k→∞

∫ T

0

wk(s) · ϕ(s)ds =

∫ T

0

w(s) · ϕ(s)ds

for all ϕ ∈ L1([0, T ],Rn). In particular, by choosing ϕ ≡ (1, . . . , 1), we obtain that
yx̄,wk converges uniformly to yx̄,w and this also implies

lim
k→∞

g(yx̄,wk(T )) = g(yx̄,w(T )).

Recalling (L1), we have

lim inf
k→∞

(P [wk(·)]− P [w(·)]) = lim inf
k→∞

∫ T

0

L(yx̄,wk(s), wk(s))−L(yx̄,w(s), w(s))ds

≥ lim inf
k→∞

∫ T

0

−LR1 ·
∣∣yx̄,wk(s)− yx̄,w(s)

∣∣+(L(yx̄,w(s), wk(s))− L(yx̄,w(s), w(s))
)
ds

= lim inf
k→∞

∫ T

0

L(yx̄,w(s), wk(s))− L(yx̄,w(s), w(s))ds.

Since L(x, ·) is convex and wk ⇀ w, it holds

lim inf
k→∞

∫ t̄

0

L(yx̄,w(s), wk(s))− L(yx̄,w(s), w(s))ds ≤ 0.

and this yields
P [w(·)] ≤ lim inf

k→∞
P [wk(·)] = λ.

In particular, u∗ = w is an bounded optimal control of (P) and the proof is complete.
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1.4 Pontryagin maximum principle

In this subsection, we wants to derive some necessary conditions for optimality for
the following Mayer problem with free terminal point

max
u∈Uad

ψ(x(T )) (P)

subjects to
ẋ(t) = f(x(t), u(t)), x(0) = x0.

For the simplicity, we will assume that ψ and f are smooth.

Theorem 1.8 Let t 7→ u∗(t) be an optimal control and x∗(t) be the corresponding
optimal trajectory for (P). Denote by p∗(t) the solution of the adjoint equation

ṗ∗(t) = − p∗(t) ·Dxf(x∗(t), u∗(t)) with p∗(T ) = Dψ(x∗(T )).

Then the following holds

p∗(t) · f(x∗(t), u∗(t)) = max
w∈U

{p∗(t) · f(x∗(t), w)} a.e. t ∈ [0, T ]

Proof. The proof is divided into several steps:

1. (Needle variation) For a fixed τ > 0 and w ∈ U , we consider the needle
variation uε ∈ Uad such that

uε(τ) =


u∗(τ) if τ /∈ [τ − ε, τ ]

w if τ ∈ [τ − ε, τ ]

for ε sufficiently small. The perturbed strategy is denote by

xε(t) = yx0,uε(t) for all t ∈ [0, T ].

By the optimality condition, one has that

ψ(x∗(T )) ≥ ψ(xε(T )) for all ε > 0.

Thus, if limε→∞
xε(T )−x∗(T )

ε
= v(T ) then

lim
ε→∞

ψ(xε(T ))− ψ(x∗(T ))

ε
= Dψ(x∗(T )) · v(T ) ≤ 0.

2. Assume that u∗ is continuous at time t = τ . We claim that

lim
ε→0+

xε(τ)− x∗(τ)

ε
= f(x∗(τ), w))− f(x∗(τ), u∗(τ))) := v(τ). (1.29)
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Since u∗(t) = uε(t) for all t ∈ [0, τ − ε], it holds that x∗(τ − ε) = xε(τ − ε). Using
the smoothness of f and continuity of u∗ at τ , one can write

xε(τ)− x∗(τ) =

∫ τ

τ−ε
f(xε(s), w)− f(x∗(s), u∗(s))ds

=

∫ τ

τ−ε
f(xε(s), w)− f(x∗(s), u∗(τ))ds+ o(ε)

= ε · [f(xε(τ), w)− f(x∗(τ), u∗(τ))] + o(ε)

and this yields (1.29). Since uε = u∗ on the remaining interval [τ, T ], the evolution
of the tangent vector

v(t) := lim
ε→0+

xε(t)− x∗(t)
ε

for all t ∈ [τ, T ]

governed by the linear equation

v̇(t) = Dxf(x∗(t), u∗(t)) · v(t).

Recalling that p∗(t) is the solution of the adjoint equation

ṗ∗(t) = − p∗(t) ·Dxf(x∗(t), u∗(t)) with p∗(T ) = Dψ(x∗(T )),

we then have
d

dt
[p∗(t) · v(t)] = 0 for all t ∈ [τ, T ].

In particular,

p∗(τ) · v(τ) = p∗(T ) · v(T ) = Dψ(x∗(T )) · v(T ) ≤ 0

and this implies that

p∗(τ) · f(x∗(τ), u∗(τ)) = max
w∈U

{p∗(t) · f(x∗(t), w)}. (1.30)

3. One observes that

xε(τ)− x∗(τ) = ε · [f(xε(τ), w)− f(x∗(τ), u∗(τ))] + o(ε)

holds if τ is the Lebesgue point of u∗, i.e.,

lim
δ→0+

1

2δ
·
∫ τ+δ

τ−δ
|u∗(s)− u∗(τ)|ds = 0.

Thus, (1.30) holds for every Lebesgue points of u∗. Thus, the proof is complete by
the Lebesgue differentiation theorem.
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Relying on the Maximum Principle, the computation of the optimal control requires
two steps:

(i) Given x, p, find u∗(x, p) such that

u∗(x, p) = argmax
w∈U

p · f(x,w);

(ii). Solve the two-point boundary value problem
ẋ = f(x, u∗(x, p))

ṗ = − p ·Dxf(x, u∗(x, p))

with


x(0) = x0

p(T ) = ∇ψ(x(T )).

In general, it is not so easy to solve (i)-(ii) since u∗ is nonlinear and may be discon-
tinuous of multivalued.

Example 1.(linear pendulum) Consider a linearized pendulum with unit mass.
For every t > 0, let us denote by

• q(t) = the position of the pendulum at time t;

• u(t) ∈ [−1, 1] = an external force at time t.

The equation of motion is

q̈(t) + q(t) = u(t), q(0) = q̇(0) = 0. (1.31)

Goak: Maximize q(2), the terminal displacement at time T = 2.

Let’s rewrite (1.31) by setting

x(t) =

q(t)
q̇(t)

 , f(x, u) =

 x2

u− x1.

 (1.32)

We thus seek for u∗ which

max
u∈U

x1(2) subject to ẋ(t) = f(x, u).

One computes that Dxf(x, u) =

(
0 1
−1 0

)
. The linearized equation for a tangent

vector v = (v1, v2)T is

v̇(s) =

(
0 1
−1 0

)
v(s)
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and the corresponding adjoint vector p = (p1, p2) satisfies

ṗ = − p
(

0 1
−1 0

)
with ∇ψ(x∗(2)) = (1, 0).

Solving backward the above ODE, we get

p(t) = (cos(2− t), sin(2− t)) for all t ∈ [0, 2].

For every t ∈ [0, T ], we choose u∗(t) such that

u∗(t) ∈ arg max
w∈[−1,1]

{cos(2− t)x2(t) + sin(2− t)(−x1(t) + w)} .

It is clear that
u∗(t) = sign(sin(T − t)).

Problem 11(Linear-quadratic optimal control). Consider the linear control
problem

ẋ = Ax+Bu, x(0) = x̄.

where x ∈ Rn, u ∈ Rm, A ∈ Mn×n and B ∈ Mn×m. Given two symmetric matrice
Q ∈ Mn×n and R ∈ Mm×m, can one write a necessary condition for the optimal
control problem

min
u(·)∈Aad

∫ T

0

[
xTQx+ uTRu

]
dt.

The above theorem can be extended to the more optimization problem

max
u∈Uad

{
L(t, x(t), u(t))dt+

∫ T

0

ψ(x(T ))

}
(P1)

subjects to
ẋ(t) = f(t, x(t), u(t)), x(0) = x0.

Theorem 1.9 Let t 7→ u∗(t) be an optimal control and x∗(t) be the corresponding
optimal trajectory for (P1). Denote by p∗(t) the solution of the adjoint equation

ṗ∗(t) = − p∗(t) ·Dxf(x∗(t), u∗(t))−DLx(t, x∗(t), u∗(t)), p∗(T ) = Dψ(x∗(T )).

Then the following holds for all most every t ∈ [0, T ]

p∗(t) ·f(x∗(t), u∗(t))+L(t, x∗(t), u∗(t)) = max
w∈U

{p∗(t) ·f(x∗(t), w)+L(t, x∗(t), w)}.
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Proof. The problem (P1) can be written as the folliwng Mayer problem

max
u∈Uad

∫ T

0

Ψ(x(T )) (P1)

subjects to
ẏ(t) = F (t, x(t), u(t)), y(0) = (x0, 0).

with y(t) ∈ Rn+1 and

F (t, x, u) = (f(t, x, u), L(t, x, u)), Ψ(y1, . . . , yn+1) = ψ(y1, . . . , yn) + yn+1.

Then one can apply the previous Theorem.

1.5 Dynamic programming principle

In this section, we will introduce an approach to seek for an optimal feedback con-
trol. This will lead to the first order nonlinear partial differential equations of the
corresponding value function. The basic tool in this approach is the Dynamic Pro-
gramming Principle. This principle express the intuitive idea that the minimum
cost is achieved if one behaves as follows:

• Let the control system evolve for a small amount of time ε choosing an arbi-
trary control u and pay the corresponding cost J [x0, u].

• Denote a new control u] by

u](s) = u(s) for all s ∈ [0, ε] ,

and u](s) = u∗(s) for all s < ε where u∗(s) is the best possible control to
minimize the cost function after time ε > 0.

• One has that
J [x0, u] ≥ J(x0, u

]) .

Let’s recall our control system
ẋ(t) = f(x(t), u(t)), a.e. t ∈ [0,+∞[,

x(0) = x0 .
(CS)

The basic tool to prove this principle is the following semigroup property for the
solutions of system (CS).

Lemma 1.10 Under standard assumptions (F1)-(F2), for a given initial data x0

and control u ∈ Uad, it holds

yx0,u(·)(s+ t) = yxs,u(·+s) with xs = yx0,u(s)

for all s, t ≥ 0.
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Proof. Recalling that f is uniformly Lipschitz, Theorem 1.27 implies that the
system (CS) admits a unique solution yx0,u(·) and has an integral formulation

yx0,u(t) = x0 +

∫ t

0

f(yx0,u(s), u(s)) ds for all t ≥ 0 .

One can write

yx0,u(t+ s) = x0 +

∫ t+s

0

f(yx0,u(τ), u(τ)) dτ

= x0 +

∫ s

0

f(yx0,u(τ), u(τ)) dτ +

∫ t+s

s

f(yx0,u(s+ τ), u(s+ τ)) dτ

= x2 +

∫ t

0

f(yxs,us(τ), us(τ)) dτ

where we set

yxs,us(τ)
.
= yx0,u(s+ τ) and us(τ)

.
= u(s+ τ)

and can use this by the uniqueness.

Remark 1.11 The following properties of the admissible controls hold

(i) If u(·) ∈ Uad then u(t+ ·) ∈ Uad for all t ≥ 0;

(ii) For any u1 ∈ Uad, u2(·) ∈ Uad and time t > 0, the concatenated control

u(s)
.
=


u1(s) for s ∈ [0, t) ,

u2(s) for s ∈ [t,+∞)

belongs to Uad.

1. DPP for the minimum time function. Given a closed target set T ⊂ Rd

and initial data x0, the minimum time to reach T from x0 is denoted by

T (x0) = inf
u∈Uad

{t ≥ 0 | yx0,u ∈ T } .

Proposition 1.11.1 Under standard assumptions (F1)-(F2), for a given initial
data x0, the following holds

T (x0) = inf
u∈Uad

{s+ T (yx0,u(s))} (1.33)

for all s ∈ [0, T0].
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Proof. 1. Given s > 0 and control u ∈ Uad, we first show that

T (x0) ≤ s+ T (yx0,u(s)) . (1.34)

Denote by xs
.
= yx0,u(s). One has

T (xs) = inf
v∈Uad
{t ≥ 0 | yxs,v ∈ T } .

For any v ∈ Uad, consider the concatenated control

uv(τ)
.
=


u(τ) for τ ∈ [0, s) ,

v(s+ τ) for τ ∈ [s,+∞) .

It is clear that ũ belongs to Uad. From lemma 1.10, it holds

yx0,uv(s+ τ) = yxs,v(τ) for all τ > 0 .

This implies that

s+ T (xs) = s+ inf
v∈Uad
{t ≥ 0 | yxs,v ∈ T } = inf

v∈Uad
{t ≥ 0 | yx0,uv ∈ T }

and it yields (1.34).

2. To conclude the proof, we show that

T (x0) ≥ s+ T (yx0,u(s)) . (1.35)

Assume that T (x0) < +∞. By the definition, for any ε > 0, the exists a control uε
such that the trajectory yx,uε reach the target T before time T (x0)+ε. This implies
that

T (x0) + ε ≥ s+ T (yx0,uε(s))

and it yields
T (x0) + ε ≥ s+ inf

u∈Uad
T (yx0,uε(s)) .

By letting ε→ 0+, we obtain (1.35)

Corollary 1.12 Assuming that T is a smooth function. We show that T is a solu-
tion to the different

H(x,∇u(x)) = 1 for all x ∈ Rn\T (1.36)

with
H(x, p) = sup

w∈U
〈−p, f(x,w)〉.
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Proof. Indeed, fixed x0 ∈ Rn\T , for any w ∈ U we consider the constant control

uε(s) = w for all s ∈ [0, ε[.

Let xε = yx0,uε(ε), we have

xε ≈ x0 + ε · f(x0, w) and T (x0) ≤ ε+ T (xε).

Thus,

−1 ≤ lim
ε→0+

T (xε)− T (x)

ε
= ∇T (x0) · f(x0, w)

and it yields
H(x0,∇T (x0)) ≤ 1.

On the other hand, assume that x∗ is an optimal trajectory then

T (x0) = s+ T (x∗(s)) for all s > 0

and this implies that
∇T (x0) · f(x0, u

∗(0)) = − 1.

The proof is complete.

2. DPP for the Bolza problem. Given a running cost r : U × Rn → R and
terminal cost g : Rn → R. The value function of the Bolza problem with pay-off P
in (1.13) and control system (CS) is

V (t, x0) = inf
u∈Uad

∫ t

0

r(u(t), yx0,u(τ)) dτ + g(yx0,u(t))

for all given initial data x0 ∈ Rn.

Proposition 1.12.1 Under standard assumptions (F1)-(F2), for a given initial
data x0 ∈ Rn and time t > 0, the following holds

V (t, x0) = inf
u∈Uad

{∫ s

0

r(u(τ), yx0,u(τ)) dτ + V (t− s, yx0,u(s))
}

(1.37)

for all s ∈ (0, t).

Proof. 1. For any given u ∈ Uad, we show that

V (t, x0) ≤
∫ s

0

r(u(τ), yx0,u(τ)) dτ + V (t− s, yx0,u(s)) . (1.38)

As in the previous proof, denote by xs
.
= yx0,u(s). One has

V (t− s, xs) = inf
v∈Uad

{∫ t−s

0

r(v(τ), yx0,v(τ)) dτ + g(yx0,v(t− s))
}
.
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For any v ∈ Uad, consider the concatenated control

uv(τ)
.
=


u(τ) for τ ∈ [0, s) ,

v(s+ τ) for τ ∈ [s,+∞) .

It is clear that ũ belongs to Uad. From lemma 1.10, it holds

yx0,uv(s+ τ) = yxs,v(τ) for all τ > 0

and
yx0,uv(τ) = yx0,u(τ) for all τ ∈ (0, t) .

Thus,∫ t

0

r(uv(τ), yx0,uv(τ)) dτ + g(yx0,uv(t))

=

∫ s

0

r(u(τ), yx0,u(τ)) dτ +

∫ t−s

0

r(v(τ), yx0,v(τ)) dτ + g(yx0,v(t− s))

for all v ∈ Uad. Therefore,

inf
v∈Uad

∫ t

0

r(uv(τ), yx0,uv(τ)) dτ + g(yx0,uv(t))

=

∫ s

0

r(u(τ), yx0,u(τ)) dτ + V (t− s, yx0,u(s))

and it yields (1.38).

2. To complete the proof, we show that

V (t, x0) ≥
∫ s

0

r(u(τ), yx0,u(τ)) dτ + V (t− s, yx0,u(s)) . (1.39)

For any given ε > 0, there exists a control uε ∈ Uad such that

V (t, x0) + ε ≥
∫ t

0

r(uε(τ), yx0,uε(τ)) dτ + g(yx0,uε(t))

≥
∫ s

0

r(uε(τ), yx0,uε(τ)) dτ +

∫ t−s

0

r(uε(s+ τ), yxs,uε(s+ τ)) dτ + g(yxs,uε(t− s))

where xs = yx0,u(s). This implies that

V (t, x0) + ε ≥
∫ s

0

r(uε(τ), yx0,uε(τ)) dτ + V (t− s, yx0,uε(s))

≥ inf
v∈Uad

{∫ t−s

0

r(v(τ), yx0,v(τ)) dτ + g(yx0,v(t− s))
}

and it yields 1.39.
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Corollary 1.13 Assume that V is smooth. Then V is the solution to

Vt +H(x,∇xV ) = 0, V (0, x0) = g(x0)

with
H(x, p) = min

w∈U
{r(x,w) + p · f(x,w)}

Proof. I leave it for students.

3. DPP for the infinite horizon problem. Given a running cost L : U×Rn → R
and a discount rate λ > 0, the value function of of the infinite time horizon problem
with a discount rate is

V (x) = inf
u∈Uad

{∫ +∞

0

e−λ·t · L(yx0,u(t), u(t)) dt

}
.

The following holds

Proposition 1.13.1 Under standard assumptions (F1)-(F2), for a given initial
data x0 ∈ Rn and any time t > 0. The value function V satisfies

V (x0) = inf
u∈Uad

{∫ t

0

e−λ·sL(yx0,u(s), u(s))ds+ e−λ·t · V (yx0,u(t))

}
. (1.40)

Proof. Fix x0 ∈ Rn and time t > 0, for each admissible control u ∈ Uad, we have

P [x0, u] =

∫ ∞
0

e−λ·t · L(yx0,u(s), u(s)) ds

=

∫ t

0

e−λ·s · L(yx0,u(s), u(s)) ds+

∫ +∞

t

e−λ·s · L(yx0,u(s), u(s)) ds

=

∫ t

0

e−λ·s · L(yx0,u(s), u(s)) ds+ e−λ·t ·
∫ +∞

t

e−λ·(s−t) · L(yx0,u(s), u(s)) ds

=

∫ t

0

e−λ·s · L(yx0,u(s), u(s)) ds+ e−λ·t ·
∫ +∞

0

e−λ·s · L(yxt,u(t+·)(s), u(t+ s)) ds

where xt
.
= yx0,u(t). This implies that

P [x0, u] ≥
∫ t

0

e−λ·s · L(yx0,u(s), u(s)) ds+ e−λ·t · V (yx0,u(t))

and it yields

V (x0) ≥ inf
u∈Uad

{∫ t

0

e−λ·sL(yx0,u(s), u(s))ds+ e−λ·t · V (yx0,u(t))

}
.

To complete the proof, we need to show that

V (x0) ≤ inf
u∈Uad

{∫ t

0

e−λ·sL(yx0,u(s), u(s))ds+ e−λ·t · V (yx0,u(t))

}
. (1.41)
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For any u ∈ Uad, we set xt = yx0,u(t). For every ε > 0, there exists an control uε
such that

V (xt) + ε ≥
∫ +∞

0

e−λ·s · L(yxt,uε(s), uε(s)) ds .

Denote by

ūε(s)
.
=


u(s) for τ ∈ [0, t) ,

uε(s− t) for s ∈ [t,+∞) .

By the definition, we have

V (x0) ≤
∫ +∞

0

e−λ·s · L(yx0,uε(s), uε(s))ds

=

∫ t

0

e−λ·s · L(yx0,ūε(s), ūε(s))ds+

∫ +∞

t

e−λ·s · L(yx0,uε(s), ūε(s))ds

=

∫ t

0

e−λ·s · L(yx0,u(s), u(s))ds+ e−λ·t ·
∫ +∞

t

e−λ·(s−t)L(yx0,ūε(s), ūε(s))ds

=

∫ t

0

e−λ·s · L(yx0,u(s), u(s))ds+ e−λ·t ·
∫ +∞

0

e−λ·sL(yxt,uε(s), uε(s)) ds

≤
∫ t

0

e−λ·s · L(yx0,u(s), u(s))ds+ e−λ·t · [V (xt) + ε] .

Taking ε→ 0, we obtain that

V (x0) ≤
∫ t

0

e−λ·s · L(yx0,u(s), u(s))ds+ e−λ·t · V (yx0,u(t))

for all u ∈ Uad and it yields (1.41)

Corollary 1.14 Assume that V is smooth. Then V is the solution to

λV = H(x,∇xV ), V (0, x0) = g(x0)

with
H(x, p) = min

w∈U
{r(x,w) + p · f(x,w)}

Proof. For any constant admissible control α(·) = w ∈ U , we have

V (x) ≤
∫ t

0

e−λ·sL(yx0,α(s), w)ds+ e−λ·t · V (yx0,α(t)).

This implies that

−λV (x) +∇V (x) · f(x,w) =
d

dt

[
e−λ·t · V (yx0,α(t))

]
|t=0

≥ − L(x,w).

Thus,
λV (x) ≤ min

w∈U
{V (x) · f(x,w) + L(x,w)} = H(x,∇V (x)).

The opposite site is trivial.
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1.6 Recovering the optimal control from the value function

1. Infinite horizon problem. Let V be the value function of the optimization problem

V (x) = inf
u∈Uad

{∫ +∞

0

e−λ·t · L(yx0,u(t), u(t)) dt

}
subject to the control system (CS). Assume that V is in C1, we show how to recover
the optimal control.

Given an initial data x0, the optimal control can be determined as follows:

1. For every control u, we introduce the function

Φu(t) =

∫ t

0

e−λ·s ·L(yx0,u(s), u(s)) ds+ e−λt · V (yx0,u(t)) for all t ≥ 0 . (1.42)

It is clear that Φu(·) is a non-decreasing function, i.e.,

Φu(t1) ≤ Φu(t2) for all 0 ≤ t1 ≤ t2 .

Indeed, we have

eλ·t1 · [Φu(t1)− Φu(t2)] = V (yx0,u(t1))

−
(∫ t2−t1

0

e−λ·s · L(yx0,u(t1 + s), u(t1 + s))ds+ eλ(t2−t1)V (yx0,u(t2))

)
≤ 0.

Moreover, u is an optimal control if and only if the function Φu(·) is constant. In
this case, we compute

0 =
d

dt
Φu(t) = e−λ·t · L(yx0,u(t), u(t))

− λe−λt · V (yx0,u(t)) + e−λt · ∇V (yx0,u(t)) · f(yx0,u(t)),

and this implies that

λ · V (yx0,u(t)) = L(yx0,u(t), u(t)) +∇V (yx0,u(t)) · f(yx0,u(t)) . (1.43)

for a.e. t ≥ 0.

2. Given any t̄ > 0 and control w ∈ U , let us consider

vw(τ)
.
=


u(s) for s ∈ [0, t̄) ,

w for τ ∈ [t̄,+∞) .

Recalling that the function Φvw(t) is monotone non-decreasing. This implies that

0 ≤ d

dt
Φvw(t) = e−λ·t ·

[
∇V (yx0,vw(t)) · f(yx0,vw(t), vw(t))

+ L(yx0,vw(t), w(t))− λ · V (yx0,vw(t))
]

for all t ≥ 0.
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In particular,

∇V (yx0,vw(t̄)) · f(yx0,vw(t̄) + L(yx0,vw(t), w(t))− λ · V (yx0,vw(t̄)) ≥ 0 .

Since
yx0,vw(t̄) = yx0,u(t̄)

.
= xt̄ and vw(t̄) = w,

we have
L(xt̄, w) +∇V (xt̄) · f(xt̄, w)− λ · V (xt̄) ≥ 0 . (1.44)

3. From (1.43) and (1.44), one obtain that

L(xt̄, w) +∇V (xt̄) · f(xt̄, w) ≥ L(xt̄, u(t̄)) +∇V (xt̄) · f(xt̄, u(t̄)) .

Therefore, if (u∗(t), x∗(t)) be an optimal control and corresponding optimal trajec-
tory pair then the followings hold

u∗(t) = argmin
w∈U

{L(x∗(t), w) +∇V (x∗(t), w) · f(x∗(t), w)}

and in particular

u∗(0) = argmin
w∈U

{L(x0, w) +∇V (x0, w) · f(x0, w)} .

Therefore, if the minimum is attained at a unique point, this uniquely determines
the optimal control, in feedback form the function

u∗(x) = argmin
w∈U

{L(x,w) +∇V (x,w) · f(x,w)}

4. Let’s introduction the Hamilton function

H(x, p) = min
w∈U

{L(x,w) +∇p · f(x,w)} .

If the value function V is differentiable at x̄ then V solves the Hamilton-Jacobi
equation

λ · V (x) = H(x,∇V (x))

at the point x̄.

2 Viscosity solutions

2.1 The method of characteristics

Given an open set Ω ⊂ Rn, consider the first order PDEs
H(x, u,∇u) = 0 for all x ∈ Rn

u(x) = g(x) x ∈ ∂Ω.

(2.1)
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Assume that H and g is C1 function, we want to construct a solution in a neighbor-
hood of ∂Ω by the classical method of characteristics, i.e., determining the value of
u along a suitable curve s 7→ x(s) starting from ∂Ω by solving a suitable system of
ODEs. Let’s introduce the variable

p(x) = ∇u(x) = (ux1 , ux2 , . . . , unn) ,

we seek a system of ODEs describing how u and p change along x(·). We compute

d

dt
u(x(t)) =

n∑
i=1

uxi(x(t)) · ẋi(t)

and
d

dt
pj(x(t)) =

n∑
i=1

pxixj(x(t))ẋi(t) =
n∑
i=1

uxixj(x(t))ẋi(t).

for all j ∈ {1, 2, . . . , n}. On the other hand, differentiating (4.1) w.r.t xj, one gets

∂H

∂xj
+
∂H

∂u
uxj +

n∑
i=1

∂H

∂pi
uxixj = 0

ant this implies that

n∑
i=1

∂H

∂pi
· uxixj = − ∂H

∂xj
− ∂H

∂u
· uxj .

The idea’s of the method of characteristics is to make the terms involving second
derivatives disappear by a good choice of x. In this case, we will choose ẋi = ∂H

∂pi
and obtain the following Cauchy problem

ẋ =
∂H

∂p

u̇ = p · ∂H
∂p

,

ṗ = − ∂H

∂x
− ∂H

∂u
· p

with


x(0) = y

u(0) = u(y)

p(0) = ∇u(y)

for all y ∈ ∂Ω. (2.2)

Here, we wrote

u(s) = u(x(s)) and p(s) = p(x(s)).

Solving the above Cauchy problem for every y ∈ ∂Ω could provide a solution to
(4.1) in a neighborhood of the boundary of Ω.
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Example 1. Given Ω ⊂ R2 be a bounded open set with smooth boundary, consider
a Eikonal equation {

|∇u|2 = 0 x ∈ Ω

u = 0 on ∂Ω.
(2.3)

In this case, the function

H(x, u, p) = p2
1 + p2

2 − 1.

The associated characteristic system of ODEs is
ẋ = 2p

u̇ = 2|p|2 = 2

ṗ = 0

with


x(0) = y ∈ ∂Ω

u(0) = 0

p(0) = n(y)

(2.4)

where n(y) is the internal unit normal to the set Ω at point y. Solving this system
of ODEs, we get

x(s) = y + 2n(y)s and u(x(s)) = 2s.

Assume that Ω is smooth. The solution u is a neighborhood of ∂Ω is

u(x) = |x− y| = d∂Ω(x).

However, if Ω is bounded then there will be a set Σ ⊂ Ω where for every x̄ ∈ Σ,

d∂Ω(x̄) = |x̄− y1| = |x̄− y2|

for some y1 6= y2 ∈ ∂Ω. This shows that (2.3) does not admits a global C1 solution in
general. One should consider solutions in a generalized sense. By Rademacher’s the-
orem, every Lipschitz real valued function on Rn is differentiable almost everywhere.
This leads to a natural definition

Definition 2.1 The function u : Ω → R is a generalized solution to the Cauchy
problem (4.1) if it is Lipschitz, satisfies the boundary conditions, and solves the
PDE almost everywhere in Ω.

This concept is fine for the existence but it does not leads to a useful uniqueness
result. Indeed, consider the case of Eikonal equation (2.3) with Ω = (−1, 1). One
can easily check that both u1(x) = 1− |x| and

u2(x) =
1

2
·

[
χ(−1,0] ×

(
1−

∣∣∣∣x+
1

2

∣∣∣∣2
)

+ χ[0,1) ×

(
1−

∣∣∣∣x− 1

2

∣∣∣∣2
)]

are generalized solution to (4.1). More general, all piecewise affine functions with
slopes in {−1, 1} are generalized solutions. Notice that these solutions except for
the distance function u1 has a local minimum in the interior of ] − 1, 1[ . Thus, u1
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is the only one that can be obtained as a vanishing viscosity limit. Indeed, assume
that there exists a family of C2 solutions to the viscous equations

|u′ε|2 − 1 = ε · u′′ε

such that limε→0+ ‖uε − ū‖∞ = 0 for some continuous function ū. Assume that ū
have a local minimum x0 ∈]− 1, 1[. Then

ū(x0 ± δ) > ū(x0)

for some δ > 0. Thus, for ε > 0 sufficiently small, the function uε has a local
minimum xε ∈ [x0 − δ, x0 + δ] and

u′ε(xε) = 0 and u′′ε(xε) ≥ 0.

This yields a contradiction that

−1 = |u′ε(xε)|2 − 1 = ε · u′′ε(xε) ≥ 0.

In general, one could looks for a solution to (4.1) by vanishing viscosity method,
i.e., let uε be a C2 solution to the viscous equation

H(x, uε,∇uε) = ε ·∆uε.

Show that

• uε is locally bounded in Ω, uniformly w.r.t ε;

• the sequence {uε}ε≥0 is locally equicontinuous.

The Ascoli’s Theorem implies that there exists a subsequence sequence of {uε}
converges locally uniformly to u which could be the unique solution to (4.1).

2.2 Viscosity solutions via touching functions

Given Ω ⊆ Rn open, consider the first order PDE

H(x, u,∇u) = 0 x ∈ Ω. (2.5)

Here the function H : Ω× R× Rn → R is a continuous (nonlinear) function.

Definition 2.2 A function u ∈ C(Ω) is called:

• a viscosity subsolution of (2.5) if for every ϕ ∈ C1(Ω) such that u − ϕ has a
local maximum at x0, it holds

H(x0, u(x0),∇ϕ(x0)) ≤ 0;
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• a viscosity supersolution of (2.5) if for every ϕ ∈ C1(Ω) such that u− ϕ has a
local minimum at x0, it holds

H(x0, u(x0),∇ϕ(x0)) ≥ 0;

• a viscosity solution of (2.5) if it is both a sub-solution and super-solution.

The above definition of viscosity solution is naturally motivated by the properties
of vanishing viscosity limits.

Theorem 2.3 Let uε be a C2 solution to the viscous equation

H(x, uε,∇uε) = ε ·∆uε. (2.6)

Assume that the sequence {uε}ε≥0 converges uniformly to u on Ω. Then u is a
viscosity solution of (2.5).

Proof. We only need to show that u is a sub-viscosity solution of (2.5). The fact
that u is a supersolution is proved in an entirely similar way. Given ϕ ∈ C1(Ω) such
that u− ϕ has a local maximum at x0, we show that

H(x0, u(x0),∇ϕ(x0)) ≤ 0 (2.7)

Consider an alternative function

ϕ̃(y) = ϕ(y) + |y − x0|2.

such that u− ϕ̃ has a strictly local maximum at x0, and ∇ϕ̃(x0) = ∇ϕ(x0). Thus,
since uε converges uniformly to u in Ω, one can show that for any given δ > 0, there
exists 0 < ρ < δ and a C2 function ψ such that

(i) For every y ∈ B(x0, ρδ), it holds

|∇ϕ(y)−∇ϕ(x0)| ≤ δ, |∇ϕ(y)−∇ψ(y)| ≤ δ;

(ii) For every ε > 0 sufficiently small, uε − ψ has a local maximum at a point
xε ∈ B(x0, ρδ).

By the continuity of u and H, it holds

sup
y∈B(x0,ρδ)

|H(y, u(y), ψ(y))−H(x0, u(x0),∇u(x0))| = O(δ). (2.8)

From (ii), one gets

∇uε(xε) = ∇ψ(xε) and ∆uε(xε) ≤ ∆ψ(xε).

Thus, (2.6) implies that

H(xε, uε(xε),∇ψ(xε)) = H(xε, uε(xε),∇uε(xε)) = ε∆uε(xε) ≤ ε∆ψε(xε).
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There exists a sequence (εm)m≥1 converge to 0+ such that limm→+∞ xεm = x̄ ∈
B(x0, ρ), we have

H(x̄, u(x̄),∇ψ(x̄)) ≤ δ.

Thus, (2.8) implies that

H(x0, u(x0),∇u(x0)) ≤ O(δ).

Taking δ to 0+, we then obtain (2.9).

2.3 Generalized differentials

We are now introducing a basic concept of generalized differentials in nonsmooth
analysis which can be used to define a viscosity solution and plays important role
in regularity theory.

Definition 2.1 Let f be a real valued function defined on the open set Ω ⊂ Rn. For
any x ∈ Ω, the sets

D−f(x) =
{
p ∈ Rn

∣∣∣ lim inf
y→x

f(y)− f(x)− 〈p, y − x〉
|y − x|

≥ 0
}

D+f(x) =
{
p ∈ Rn

∣∣∣ lim sup
y→x

f(y)− f(x)− 〈p, y − x〉
|y − x|

≤ 0
}

are called, respectively, the (Fréchet) sub-differential and super-differential of f at
x.

In order to get a better felling on the above concepts, Let’s denote by

Epi(f) =
{

(y, β) ∈ Rn × R
∣∣∣ β ≥ f(y)

}
the epigraph of f , and

Hyp(f) =
{

(x, β) ∈ Rn × R
∣∣∣ β ≤ f(x)

}
the hyograph of f . One can show that

• p is a sub-differential of u at x iff the vector (p,−1) is a Fréchet normal vector
to Epi(f) at a point (x, f(x)), denote by (p,−1) ∈ NF

Epi(f)(x, f(x)), i.e.,

lim sup
Epi(f)3(y,β)→(x,f(x))

〈
(p,−1),

(y, β)− (x, f(x))

‖(y, β)− (x, f(x))‖

〉
≤ 0

• p is a super-differential of u at x the vector (p,−1) is a Fréchet normal vector
to Epi(f) at a point (x, f(x)), denote by (−p, 1) ∈ NF

Hyp(f)(x, f(x)), i.e.,

lim sup
Hyp(f)3(y,β)→(x,f(x))

〈
(−p, 1),

(y, β)− (x, f(x))

‖(y, β)− (x, f(x))‖

〉
≤ 0
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In other words, one says that

• p is a sub-differential of u at x iff the hyperplane y 7→ f(x) + p · (y − x) is
tangent from below the graph of u at point x.

• p is a super-differential of u at x iff the hyperplane y 7→ f(x) + p · (y − x) is
tangent from above the graph of u at point x.

Example: Consider the distance function to the set ]−∞,−1] ∪ [1,+∞[

d(x) =


0 if |x| ≥ 1

1− |x| if |x| ≤ 1.

In this case, one computes that

Df+(0) − [−1, 1], Df−(0) = ∅, Df+(−1) = ∅ and Df+(−1) = [0, 1].

The following characterization of sub- and super-differential is very useful:

Lemma 2.4 Let u be continuous in Ω. Then

(i) p is a super-differential of f at x (p ∈ D+f(x)) iff there exists ϕ ∈ C1(Ω) such
that f − ϕ has a strict local maximum at x and ∇ϕ(x) = p;

(ii) p is a sub-differential of f at x (p ∈ D−f(x)) iff there exists ϕ ∈ C1(Ω) such
that f − ϕ has a strict local minimum at x and ∇ϕ(x) = p.

Proof. Assume that there exists ϕ ∈ C1(Ω) such that f − ϕ has a local maximum
at x and ∇ϕ(x) = p. In this case, we have

f(y)− f(x) ≤ ϕ(y)− ϕ(x) = p · (y − x) +O(|y − x|)

and this implies that

lim sup
y→x

f(y)− f(x)− 〈p, y − x〉
|y − x|

≤ 0.

Thus, p is in Df+(x).

Conversely, assume that p ∈ Df+(x). Consider a non-decreasing function ρ :
[0,+∞[→ [0,+∞] such that

ρ(r) = max

{
0, sup

0<|x−y|<r

∣∣∣∣f(y)− f(x)− 〈p, y − x〉
|y − x|

∣∣∣∣
}
.
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Since p ∈ Df+(x), it holds

ρ(0) = lim
r→0+

sup
0<|x−y|<r

∣∣∣∣f(y)− f(x)− 〈p, y − x〉
|y − x|

∣∣∣∣ = 0.

The function ϕ : Ω→ R is defined by

ϕ(y) = f(x) + p · (y − x) +

∫ 2|y−x|

0

ρ(r)dr + |y − x|2.

Since

∫ 2|y−x|

0

ρ(r)dr = |y − x| · O(|y − x|), it holds that ϕ ∈ C1(Ω) and ∇ϕ(x) = p.

On the other hand, we estimate

f(y)− ϕ(y) = [f(y)− f(x)− p · (y − x)]−
∫ 2|y−x|

0

ρ(r)dr − |y − x|2

≤ ρ(|y − x|) · |y − x| −
∫ 2|y−x|

|y−x|
ρ(r)dr − |y − x|2 ≤ 0

and thus f − ϕ has a local strictly maximum at x.

Corollary 2.5 A function u ∈ C(Ω) is

• a viscosity subsolution of (2.5) if

H(x0, u(x0), p) ≤ 0 for all x0 ∈ Ω, p ∈ D+u(x0) (2.9)

• a viscosity supersolution of (2.5) if f

H(x0, u(x0), p) ≥ 0 for all x0 ∈ Ω, p ∈ D−u(x0) (2.10)

• a viscosity solution of (2.5) if (2.9) and (2.10) hold.

Lemma 2.6 Let f ∈ C(Ω) and ϕ ∈ C1(Ω) be such that f − ϕ has a strict local
maximum at x. If (fn)n≥1 converges to f uniformly, then fn−ϕ has a local maximum
xn for every n ≥ 1 such that

lim
n→∞

xn = x and um(xn) = u(x).

Proof. For every δ > 0 sufficiently small, there exists εδ > 0 such that

sup
|y−x|=δ

[f(y)− ϕ(y)] ≤ f(x)− ϕ(x)− εδ.

Since (fn)n≥1 converges to f uniformly, one has

sup
|y−x|≤δ

|fm(y)− f(y)| ≤ εδ
2

for all n ≥ Nδ
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for some Nδ > 0. Hence, for all n ≥ Nδ, it holds

sup
|y−x|=δ

[fm(y)− ϕ(y)] ≤ sup
|y−x|=δ

f(y)− ϕ(y) + sup
|y−x|≤δ

|f(y)− fm(y)|

≤ f(x)− ϕ(x)− εδ
2

and this implies that the function fm−ϕ has a local maximum ym in B(x, δ) for all
m ≥ Nδ. In particular, for every δ = 1

m
, let Nm ∈ N be a smallest natural number

such that fk − ϕ has a local maximum ymk in B(x, 1/m) for every k ≥ Nm. The
sequence (xm)n≥1 is constructed by

xk = ykm for all Nm ≤ k < Nm+1.

To complete this subsection, let us recall the basic properties of superdifferential
and subdifferential of f .

Proposition 2.1 Let f : Ω→ Rn and x ∈ Ω. Then, the following properties hold:

(i) D+f(x) = −D−(−f)(x).

(ii) D+f(x) and D−f(x) are convex (possibly empty).

(iii) D+f(x) and D−f(x) are both nonempty if and only if f is differentiable at x.
In this case, we have that

D+f(x) = D−f(x) = Df(x).

(iv) The sets of points where sub-differential or super-differential exists

Ω+ = {x ∈ Ω | D+f(x) 6= ∅}, Ω+ = {x ∈ Ω | D−f(x) 6= ∅}

are dense in Ω.

(v) Both the following sets

S+ = {x ∈ Ω | D+f(x) has more than two elements}

and
S− = {x ∈ Ω | D+f(x) has more than two elements}

are Hausdorff (n− 1)-rectifiable.

Proof. (i) and (ii) are trivial. Let now us prove (iii).

1. Assume that both f is differentiable at x then it is clear that

∇f(x) ∈ D+f(x)
⋂

D−f(x).

39



For any p ∈ D+f(x), there exists ϕ ∈ C1(Ω) such that f − ϕ has a local maximum
at x and ∇ϕ(x) = p. In particular, one has that 0 = ∇(f − ϕ)(x). Hence,

∇f(x) = ∇ϕ(x) = p.

and this yields D+f(x) = ∇f(x). Similarly, one can also have that D−f(x) =
∇f(x).

Assume that both D+f(x) and D−f(x) are non-empty. For p± ∈ D±f(x), there
exist ϕ, ψ ∈ C1(Ω) such that

∇ϕ(x) = p+, ∇ψ(x) = p−, (f − ϕ)(x) = (f − ψ)(x) = 0

f −ϕ has a local maximum at x, and f −ψ has a local minimum at x. This implies
that

ϕ(y) ≤ f(y) ≤ ψ(y) for all y ∈ B(x, δ)

for some δ > 0. In particular,

ψ(y)− ϕ(y) ≥ 0 = ψ(x)− ϕ(x) for all y ∈ B(x, δ)

and it yields ∇ψ(x) = ∇ϕ(x). Thus,

p+ = ∇ϕ(x) = ∇ψ(x) = p−

and f is differentiable at x and Df(x) = p+ = p−.

2. Let’s show that Ω+ is dense in Ω. The case Ω− is entirely similar. For every
x̄ ∈ Ω and ε > 0, we need to show that there exists y ∈ B(x̄, ε) such that D+f(y)
is non-empty. Let’ introduce a smooth function ϕ : B(x0, ε)→]0,+∞[ defined by

ϕ(x) =
1

ε2 − ‖x− x0‖2
for all x ∈ B(x0, ε).

Since
lim

|x−x0|→0+
ϕ(x) = +∞,

the function f − ϕ has a local maximum at y in B(x0, ε). This implies that

∇ϕ(y) ∈ Df(y)

and the proof is complete.

3. We will prove (iii) later.
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2.4 Comparison principle

2.4.1 Static problems

Consider the Hamilton-Jacobi equation in a open bounded domain Ω ⊂ Rn

u(x) +H(x,∇u) = 0 x ∈ Ω (2.11)

where u : Ω→ R and the Hamiltonian H : Ω× Rn → R is uniformly continuous in
x variable and satisfies the equicontinuity assumption

|H(x, p)−H(y, p)| ≤ ω(|x− y|(1 + |p|)) (2.12)

for some continuous function ω : [0,+∞[→ [0 +∞[ with ω(0) = 0.

Theorem 2.7 Let u, ū ∈ C(Ω) be viscosity sub- and super solutions of (2.28). If

u(x) ≤ ū(x) for all x ∈ ∂Ω, (2.13)

then u(x) ≤ ū(x) for all x ∈ Ω.

Proof. 1. We need to show that

max
x∈Ω

[u(x)− ū(x)] ≤ 0.

Assume by a contradiction that there exists x0 ∈ Ω such that

u(x0)− ū(x0) = max
x∈Ω

[u(x)− ū(x)] > 0. (2.14)

If both u and ū are differentiable at x0 then it holds

∇u(x0) = D+u(x0) = D−ū(x0) = ∇ū(x0).

Thus,
u(x0) +H(x0,∇u(x0)) ≤ 0 ≤ ū(x0) +H(x0,∇ū(x0))

and this yields a contradiction.

However, the main difficulty is when both u and ū are not differentiable at x0. To
handle this case, the idea is to seek for nearby points xε such that

u(xε)− ū(xε) > 0 and pε ∈ D+u(xε)
⋂

D−ū(xε). (2.15)

Hence,
u(xε) +H(xε, pε) ≤ 0 ≤ ū(xε) +H(xε, pε)

and this yields a contradiction again.

Main question: How to find xε such that (2.15) holds?
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2. To find xε, one use a classical technique of doubling of variables. The key idea is
to look at the continuous function of two variables Φε : Ω× Ω→ R defined as

Φε(x, y) = u(x)− ū(y)− 1

2ε
· |x− y|2 for all (x, y) ∈ Ω× Ω.

We claim that Φε attains a maximum in Ω × Ω for ε sufficiently small. Indeed, let
(xε, yε) be a maximum of Φε, i.e.,

Φε(xε, yε) ≥ Φε(x, y) for all (x, y) ∈ Ω× Ω.

Since u(x0)− ū(x0) > 0, it holds

Φε(xε, yε) ≥ Φε(x0, x0) = u(x0)− ū(x0) := δ > 0.

In particular, set M := max{‖u‖∞, ‖ū‖∞}, we have

|xε − yε| ≤ 2
√
Mε. (2.16)

On the other hand, by the uniform continuity of ū and u, for ε > 0 sufficiently small,
it holds

max {|u(x)− u(y)|, |u(x)− u(y)|} ≤ δ

2

for every |x− y| ≤
√

2Mε. Thus,

δ ≤ Φε(xε, yε) ≤ u(xε)− u(yε) ≤ min


u(xε)− ū(xε) + |ū(xε)− ū(yε)|

u(yε)− ū(yε) + |u(xε)− u(yε)|

≤ min{u(xε)− ū(xε), u(yε)− ū(yε)}+
δ

2
.

and this implies that

min{u(xε)− ū(xε), u(yε)− ū(yε)} ≥
δ

2
> 0.

From (2.22), one gets that both xε and yε are not in the boundary of Ω.

3. Let ϕε : Ω→ R and ψε : Ω→ R be such that

ϕε(x) = u(x)− Φε(x, yε) = ū(yε) +
1

2ε
· |x− yε|2

and

ψε(y) = ū(y) + Φ(xε, y) = u(xε)−
1

2ε
|x− yε|2

It is clear that u−ϕε = Φε(·, yε) has a maximum at xε and and ū−ψε = −Φε(xε, ·)
has a minimum at yε. Thus,

pε :=
xε − yε
ε

= ∇ϕ(xε) = ∇ψ(yε) ∈ D+u(xε)
⋂

D−ū(yε).
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Recalling that u and ū are viscosity sub- and super solutions of (2.28), we have

u(xε) +H(xε, pε) ≤ 0 ≤ ū(yε) +H(yε, pε).

In particular, the condition (2.12) yields

δ ≤ Φε(xε, yε) ≤ u(xε)− ū(yε) ≤ H(yε, pε)−H(xε, pε)

≤ ω

(
|xε − yε| ·

(
1 +
|xε − yε|

ε

))
.

4. To obtain a contradiction, we will show that

lim
ε→0+

|xε − yε|
ε

= 0. (2.17)

Indeed, since Φε(xε, xε) ≤ Φε(xε, yε), one has

u(xε)− ū(xε) ≤ u(xε)− ū(yε)−
1

2ε
· |xε − yε|2

and this implies that

1

2ε
· |xε − yε|2 ≤ |ū(xε)− ū(yε)|.

Thus, (2.16) and the uniform continuity of ū yields (2.17).

As a consequence, one obtains a uniqueness result for the boundary problem
u+H(x,∇u) = 0 x ∈ Ω

u ≡ g x ∈ ∂Ω.

(2.18)

Corollary 2.8 Under the same assumptions in Theorem 2.7, the boundary problem
(2.18) has at most one viscosity solution.

2.4.2 Time dependent problems

Consider the Cauchy problem
ut +H(t, x,∇u) = 0 (t, x) ∈]0, T [×Rn

u(0, x) = g(x) x ∈ Rn.

(2.19)

where u : [0, T ]×Rn → R and the Hamiltonian H : [0,+∞[×Rn×Rn → R satisfies
the Lipschitz continuity assumptions, i.e., there exists a constant C > 0 such that

|H(t, x, p)−H(s, y, p)| ≤ C · (|t− s|+ |x− y|) · (1 + |p|) (2.20)

and
|H(t, x, p)−H(t, x, q)| ≤ C · |p− q| (2.21)

for all t ∈ [0, T ], x, y, p, q ∈ Rn.
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Theorem 2.9 Let u, ū ∈ C([0, T ] × Rn) be bounded and uniformly continuous vis-
cosity sub- and super solutions of (2.28). If

u(0, x) ≤ ū(0, x) for all x ∈ Rn, (2.22)

then
u(t, x) ≤ ū(t, x) for all (t, x) ∈ [0, T ]× Rn. (2.23)

Proof. We will use the same techniques in the proof of Theorem 2.7. Assume by a
contradiction that (2.23) fails, i.e.,

sup
(t,x)∈[0,T ]×Rn

[u(t, x)− ū(t, x)] > 0.

In particular, there is λ > 0 such that

sup
(t,x)∈[0,T ]×Rn

[u(t, x)− ū(t, x)− 2λt] := δ > 0 (2.24)

Smooth case: If there exists (t0, x0) ∈ [0, T ]× Rn such that

u(t0, x0)− ū(t0, x0)− 2λt = sup
(t,x)∈[0,T ]×Rn

[u(t, x)− ū(t, x)− 2λt] := δ

and both u and ū are differentiable at (t0, x0) then

∇u(t0, x0) = ∇ū(t0, x0), ut(t0, x0)− ūt(t0, x0)− 2λ ≥ 0

and

ut(t0, x0) +H(t0, x0,∇u(t0, x0)) ≤ 0 ≤ ūt(t0, x0) +H(t0, x0,∇ū(t0, x0)).

Thus,
2λ ≤ ut(t0, x0)− ūt(t0, x0) ≤ 0

and this yields a contradiction.

Nonsmooth case: 1. Introduce the function Φε : ([0, T ]× Rn)2 → [0,+∞[ such
that for all (t, s, x, y) ∈ R2 × R2n

Φε (t, x, s, y) = u(t, x)−ū(s, y)−λ(s+t)− 1

ε2
·
(
|t− s|2 + |x− y|2

)
−ε·

(
|x|2 + |y|2

)
.

Since ū and u are bounded, set

M := max{‖ū‖∞, ‖u‖∞},

we have

Φε (t, x, s, y) ≤ 2M − ε · (|x|2 + |y|2)− 1

ε2
·
(
|t− s|2 + |x− y|2

)
. (2.25)
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This implies that Φε admits a global maximum at a point (tε, xε, sε, yε) ∈ ([0, T ]× Rn)2,
and

Φε(tε, xε, sε, yε) ≥ sup
(t,x)∈[0,T ]×Rn

Φε(t, x, t, x)

= sup
(t,x)∈[0,T ]×Rn

[
u(t, x)− ū(t, x)− 2λt− 2ε|x|2

]
.

From (2.24), there exists (t1, x1) ∈ [0, T ]× Rn such that

u(t1, x1)− ū(t1, x1)− 2λt1 ≥
3δ

4
.

Thus, for every 0 < ε <
δ

8|x1|2
, one has

sup
(t,x)∈[0,T ]×Rn

[
u(t, x)− ū(t, x)− 2λt− 2ε|x|2

]
≥ u(t1, x1)− ū(t1, x1)− 2λt1 − 2 · δ

8|x1|2
|x1|2 =

δ

2
,

and this yields

Φε(tε, xε, sε, yε) ≥
δ

2
> 0.

From (2.25), we get

1

ε2
·
(
|tε − sε|2 + |xε − yε|2

)
+ ε ·

(
|xε|2 + |yε|2

)
≤ 2M,

and

max{|xε|, |yε|} ≤
2M√
ε

and max{|tε − sε|, |xε − yε|} ≤ 2Mε. (2.26)

Thus,

0 ≤ Φε(tε, xε, sε, yε)− Φε(tε, xε, tε, xε) = ū(tε, xε)− ū(sε, yε)

− λ · (sε − tε)−
1

ε2
·
(
|tε − sε|2 + |xε − yε|2

)
− ε ·

(
|yε|2 − |xε|2

)
,

and this implies that

1

ε2
·
(
|tε − sε|2 + |xε − yε|2

)
≤ ū(tε, xε)− ū(sε, yε) + λ · |tε − sε|+ ε ·

∣∣|yε|2 − |xε|2∣∣ .
By the uniform continuity of ū and (2.26), one obtains

lim
ε→0+

1

ε2
·
(
|tε − sε|2 + |xε − yε|2

)
= 0. (2.27)
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On the other hand, from the boundary condition, it holds

δ

2
≤ Φε(tε, xε, sε, yε) ≤ u(tε, xε)−ū(sε, yε) ≤ u(tε, xε)−ū(sε, yε)−u(0, xε)+ū(0, xε)

≤ |u(tε, xε)− u(0, xε)|+ |ū(sε, yε)− ū(0, yε)|+ |ū(0, xε)− ū(0, yε)|.

Thus, by the uniform continuity of ū, u and (2.27), we conclude that the maximum
of Φε can attain only if both tε and sε are strictly positive for ε sufficiently small.

2. Let ϕε : [0, T ]× Rn → R and ψε : [0, T ]× Rn → R be such that

ϕε(t, x) := u(t, x)− Φε(t, x, sε, yε) = ū(sε, yε) + λ · (t+ sε)

+ ε
(
|x|2 + |yε|2

)
+

1

ε2
·
(
|t− sε|2 + |x− yε|2

)
,

and

ψε(s, y) = ū(s, y) + Φ(tε, xε, s, y) = u(tε, xε)− λ · (tε + s)

− ε
(
|xε|2 + |y|2

)
− 1

ε2
·
(
|t− sε|2 + |x− yε|2

)
.

It is clear that u − ϕε = Φε(·, sε, yε) has a maximum at (tε, xε) and and ū − ψε =
Φε(tε, xε, ·) has a minimum at (sε, yε). Since u and ū are viscosity sub- and super
solutions of (2.28)

∂ϕε
∂t

(tε, xε) +H(tε, xε,∇ϕε(tε, xε)) ≤ 0 ≤ ∂ψε
∂t

(sε, yε) +H(sε, yε,∇ψε(sε, yε)).

A direct computation yields

λ+
2(tε − sε)

ε2
+H

(
tε, xε,

2(xε − yε)
ε2

+ 2εxε

)
≤ 0

≤ − λ+
2(tε − sε)

ε2
+H

(
sε, yε,

2(xε − yε)
ε2

− 2εyε

)
.

Using the assumptions (2.20)-(2.21), we estimate

2λ ≤ H

(
sε, yε,

2(xε − yε)
ε2

− 2εyε

)
−H

(
tε, xε,

2(xε − yε)
ε2

+ 2εxε

)
≤ C ·

[
2ε|xε − yε|+ (|tε − sε|+ |yε − xε|) ·

(
1 +

2|xε − yε|
ε2

+ 2ε|yε|
)]

.

Taking ε to 0+, we get that λ ≤ 0 and this implies a contradiction.

Corollary 2.10 Under the same assumptions in Theorem 2.9, the Cauchy problem
(2.19) has at most one bounded and uniformly continuous viscosity solution
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2.5 Perron’s method

2.5.1 Static problems

Hamilton-Jacobi equation in a open bounded domain Ω ⊂ Rn

u(x) +H(x,∇u) = 0 x ∈ Ω (2.28)

where u : Ω → R and the Hamiltonian H : Ω× Rn → R is uniformly bounded and
continuous, and satisfied a coercive property

lim
|p|→+∞

min
x∈Ω

H(x, p) = +∞. (2.29)

Consider the following constant

γ0 := max
x∈Ω
|H(x, 0)|.

It is clear that u0 ≡ −γ0 and ū0 ≡ γ0 and are viscosity sub- and super-solutions of
(2.28). Indeed,

u0(x) +H(x,∇u0(x)) = − γ0 +H(x, 0) ≤ 0

≤ γ0 +H(x, 0) = ū0(x) +H(x,∇ū0(x)).

On the other hand, assume that u1 and u2 are continuous sub-viscosity solutions of
(2.28). Then the function u = max{u1, u2} is also continuous sub-viscosity solutions
of (2.28). Let’s consider the closed set

S0 = {x ∈ Ω | u1(x) = u2(x)}.

Two case are considered:

• For any given x ∈ S0, if p ∈ D+u(x) then

p ∈ D+u1(x)
⋂

D+u2(x).

Since u1 and u2 are sub-viscosity solutions of (2.28), it holds

ui(x) + |H(x, p) ≤ 0 i = 1, 2.

Thus,
u(x) + |H(x, p) = max

i=1,2
{ui(x) +H(x, p)} ≤ 0.

• For any given x ∈ Ω\S0, the continuity of u1 and u2 imply that there exists
δ > 0 such that

u ≡ u1 or u ≡ u1 in B(x, δ).

and this implies that
u(x) + |H(x, p)| ≤ 0.

for all p ∈ D+u(x).

The proof is complete.
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With the same argument, the followings holds:

Lemma 2.11 Let (ui)i∈I and (vi)i∈I be families of continuous viscosity sub-solutions
and super-solutions of (2.28. Assume that

u = sup
i∈I

ui and v = sup
i∈I

vi

are continuous. Then, u and v are viscosity sub-solution and super-solution, respec-
tively.

The above observations and the comparison principle lead to a natural question:

Question: Is there one construct a viscosity solution of (2.28) with values in
[−γ0, γ0].

Theorem 2.12 Let u : Ω→ R be defined by

u(x) = sup
{
ϕ ∈ C(Ω, [−γ0, γ0])

∣∣∣ ϕ is a subsolution to (2.28)
}

(2.30)

If u is continuous then u is a viscosity solution to (2.28).

Proof. From Lemma 2.11, we need to show that u is a viscosity super-solution of
(2.28). Given any x0 ∈ Ω, take ϕ ∈ C1(Ω) such that u − ϕ has a strict minimum
zero at x0, we need to show that

u(x0) +H(x0, Dϕ(x0)) ≥ 0. (2.31)

Two cases are considered

• If ϕ(x0) = u(x0) = γ0 then

ϕ(x)− ϕ(x0) ≤ u(x)− u(x0) ≤ 0

for x in a neighborhood of x0 and this implies (2.31), i.e.,

u(x0) +H(x0, Dϕ(x0)) = γ0 +H(x0, 0) ≥ 0.

• Otherwise, u(x0) < γ0 − ε for some small ε1 > 0. Assume that (2.31), there
exists 0 < ε < ε1 such that

u(x0) +H(x0, Dϕ(x0)) < − ε.

By the continuity of u and ϕ, there exists δ > 0 such that

u(x)+H(x,Dϕ(x)) < −ε
2

and u(x) < γ0−
ε

2
for all x ∈ B(x0, δ).

Since u− ϕ has a strict minimum zero at x0, it holds

η := min
∂B(x0,δ)

[u(x)− ϕ(x)] > 0.

48



Set γ := min{η, ε}, we denote by

ψ(x) =


u(x) x ∈ Ω\B(x0, δ)

max{u(x), ϕ(x) + η/2} x ∈ B(x0, δ).

(2.32)

It is clear that
−γ0 ≤ ψ(x) ≤ γ0 for all x ∈ Ω.

We now claim that there exists 0 < δ1 < δ such that

u(x) > ϕ(x) +
η

2
for all x ∈ B(x0, δ)\B(x0, δ1).

Indeed, for any x ∈ ∂B(x0, δ), there exist δx > 0 such that

u(x)− ϕ(x) >
η1

2
for all x ∈ B(x, δx).

The compactness property of ∂B(x0, δ) implies that it can be covered by a finite
number of open ball B(x, δx/2), i.e., there exists x1, x2, . . . , xN ∈ ∂B(x0, δ) such
that

∂B(x0, δ) ⊂
N⋃
i=1

B(xi, δxi/2).

Thus, the constant δ1 > 0 does exist. In particular, ψ is continuous in Ω and it is
easy to see that ψ is also a viscosity sub-solution of (2.28). However, at x0 we have
that

u(x0) ≤ ϕ(x0) < ψ(x0)

and this yields a contradiction.

Corollary 2.13 The viscosity solution u constructed in 2.36 is Lipschitz.

Proof. Recalling that u in bounded by γ0, one has

H(x, p) ≤ γ0 for all p ∈ D+u(x), x ∈ Ω. (2.33)

Since H is coercive, it holds that

sup
x∈Ω,p∈D+u(x)

|p| ≤ C

for some constant C > 0. We show that

u(y)− u(x) ≤ C · |y − x| for all x, y ∈ Ω

and this implies that u is uniformly Lipschitz with a Lipschitz constant C. Given
any ε > 0 and x ∈ Ω, consider the function

ϕ(y) = (C + ε) · |y − x| for all y ∈ Ω.

Assume that u− ϕ attains a max at some xε. Two cases are considered:
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• If xε 6= x then

∇ϕ(xε) = (C + ε) ·
(
xε − x
|xε − x|

)
∈ Du+(x)

and this yields a contradiction.

• If xε = x then
u(y)− ϕ(y) ≤ u(x)− ϕ(x)

and it yields
u(y)− u(x) ≤ ϕ(y) = (C + ε) · |y − x|

The proof is complete.

2.5.2 Time dependent problems

Consider the Cauchy problem
ut +H(x,∇u) = 0 (t, x) ∈]0,∞[×Rn

u(0, x) = g(x) x ∈ Rn.

(2.34)

where u : [0, T ] × Rn → R and the Hamiltonian H is uniformly bounded and
continuous in Rn ×B(0, R) for any R > 0 and satisfied a coercive property

lim
|p|→+∞

inf
x∈Rn

H(x, p) = +∞. (2.35)

Under the above assumption, one has that u0(t, x) = g(x) − γ0 · t and ū0(t, x) =
g(x)− γ0 · t and are viscosity sub- and super-solutions of (2.34) where the constant

γ0 := max
x∈Ω
|H(x, 0)| < +∞

Theorem 2.14 Assume that g ∈ C1(Rn) is uniformly Lipschitz. Let u : [0,∞[×Rn →
R be defined by

u(x) = sup
{
ϕ ∈ C ([0,∞]× Rn,R)

∣∣∣ u0 ≤ ϕ ≤ ū0 is a subsolution to (2.34)
}

(2.36)
If u is continuous then u is a viscosity solution to (2.34).

Sketch of proof. We need to show that u is a super viscosity solution of (2.34).
Given ϕ ∈ C1([0,∞[×Rn,R) such that u−ϕ has a strict minimum zero at at (t0, x0),
we show that

ϕt(t0, x0) +H(x0,∇ϕ(t0, x0)) ≥ 0. (2.37)

Two cases are considered:
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• If ϕ(t0, x0) = u(t0, x0) = ū0(t0, x0) then (2.34) is trivial.

• Otherwise, assume by a contradiction that ϕ(t0, x0) < ū0(t0, x0) and

ϕt(t0, x0) +H(x0,∇ϕ(t0, x0)) < − 2η.

In this case, there exists ε > 0 and r > 0 such that
u(t, x) < ū0(t, x)− ε for all (t, x) ∈ [t0 − r, t0 + r]× B̄(x0, r)

ϕ(t, x) < u(t, x)− ε for all (t, x) ∈ ∂[t0 − r, t0 + r]× ∂B̄(x0, r)

Thus, the function ψ : [0,+∞[×Rn → R defined by

ψ(x) =


u(t, x) (t, x) ∈ [0,+∞[×Rn\[t0 − r, t0 + r]× B̄(x0, r)

max{u, ϕ+ ε/2} (t, x) ∈ [t0 − r, t0 + r]× B̄(x0, r),

is continuous and a subsolution of (2.34) but

ψ(t0, x0) = ϕ(t0, x0) +
ε

2
> u(t0, x0).

This implies a contradiction.

3 Regularity theory

3.1 Semiconcave functions

In this subsection, we collect some main properties of a semiconcave function with
linear modulus.

Definition 3.1 Let Ω ⊂ Rn be an open set. We say that a function f : Ω → R is
semiconcave with linear modulus if there exists C ≥ 0 such that

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) ≤ λ(1− λ) · C · |y − x|2, (3.1)

for all λ ∈ [0, 1] such that [x, y] ⊂ Ω. The constant C is called a semiconcavity
constant for f in Ω.

Remark 3.1 The function f : Ω → R is semiconcave with the semiconcavity con-

stant C in Ω if and only if f(·) − C · |·|
2

2
is concave in Ω or D2f ≤ C in the sense

of distributions.
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We now introduce a standard criterion of semiconcave functions.

Proposition 3.1 Let f : Ω→ R. Assume that f continuous and

f(x+ h) + f(x− h)− 2f(x) ≤ C · |h|2 (3.2)

for all [x− h, x+ h] ⊂ Ω. Then, f is semiconcave with a semiconcavity constant C
in Ω.

Proof. We set
g(x) = f(x)− C · |x|2, for all x ∈ Ω.

From (3.8), we have that

g(x+ h) + g(x− h)− 2g(x) ≤ 0, (3.3)

for all [x− h, x+ h] ⊂ Ω. Moreover, (3.1) follows that

λg(y) + (1− λ)g(x)− g(λx+ (1− λ)y) ≤ 0, (3.4)

for all λ ∈ [0, 1] such that [x, y] ⊂ Ω. Now, one can show that (3.3) implies (3.4) for
all λ ∈ Q ∩ [0, 1]. Then, by using the continuity, we obtain (3.4) for all λ ∈ [0, 1].

Proposition 3.2 A semiconcave function (with constant C) f : Ω → R is locally
Lipschitz continuous in Ω.

Proof. 1. As in the previous Proposition, let g : Ω→ R be such that

g(x) = f(x)− C · |x|2 for all x ∈ Ω.

The function g is concave in Ω, i.e.,

λg(y) + (1− λ)g(x) ≤ g(λx+ (1− λ)y) for all λ ∈ [0, 1], [x, y] ⊂ Ω. (3.5)

Given any x0 ∈ Ω, we consider a closed cube Q with center x0 such that Q ⊂ Ω.
Let x1, ..., x2n be the vertices of Q and

m = min{f(xi) | i = 1, ..., 2n}.

For every y ∈ Q, there exists 0 ≤ λ1, ..., λ2n ≤ 1 such that
∑2n

i=1 λi = 1

2n∑
i=1

λi = 1 and y =
2n∑
i=1

λi · xi.

From (3.5), it holds

m ≤
2n∑
i=1

λig(xi) ≤ g(y) (3.6)
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and this yields

f(y) ≥ m− C · ‖y‖2 ≥ m0 := m− C ·max
z∈Q
‖z‖2 for all y ∈ Q. (3.7)

On the other hand, one has

g(x) ≤ 2g(x0)− g(2x0 − x) ≤ 2g(x0)−m for all x ∈ Q

and
f(x) ≤ 2f(x0)− C‖x0‖2 −m+ C ·max

z∈Q
‖z‖2.

Thus, (3.7) implies that

sup
x∈Q
|f(y)| ≤ 2f(x0) + C‖x0‖2 + |m|+ C ·max

z∈Q
‖z‖2

2. We claim that f is Lipschitz in Q1 = x0 +
1

2
(Q−x0). Indeed, given any x, y ∈ Q1,

there exists x1 ∈ ∂Q such that x ∈ [y, x1] and thus

x =
|y − x|
|x1 − y|

· x1 +
|x− x1|
|x1 − y|

· y.

From (3.5), one has
g(x)− g(y)

|x− y|
≤ g(y)− g(x1)

|x1 − y|
.

and this implies that

f(x)− f(y)

|y − x|
≤ f(y)− f(x1)

|x1 − y|
− C · |x1 + y|+ C · |x+ y|

Since f(·) is bounded in Q and |x1 − y| ≤ diam(Q)
4

, we have

f(x)− f(y)

|y − x|
≤ LQ

for a suitable constant LQ > 0. Similarly, one gets that

f(y)− f(x)

|y − x|
≤ LQ.

and this yields

|f(y)− f(x)| ≤ LQ · |y − x|, for all x, y ∈ Q.

The proof is complete.
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Corollary 3.1 Let f : Ω → R. f is semiconcave with a semiconcavity constant C
in Ω if and only if f continuous and

f(x+ h) + f(x− h)− 2f(x) ≤ C · |h|2 (3.8)

for all [x− h, x+ h] ⊂ Ω.

Let us now recall the result of H. Rademacher.

Theorem 3.1 (H. Rademacher) A locally Lipschitz function f : Ω → R is a.e.
differentiable in Ω.

Hence, we obtains the first result on the differentiability of semiconcave function.

Corollary 3.2 A semiconcave function f : Ω→ R is a.e. differentiable in Ω.

Moreover, a semiconcave function with linear modulus is a concave function up to
a quadratic term. This allows to extend immediately some well-know properties of
concave functions.

Theorem 3.2 Let f : Ω→ R be semiconcave. Then the following holds:

(i) (Alexandroff’s Theorem) f is a.e. twice differentiable in Ω, i.e., for a.e.
x ∈ Ω, there exists a vector p ∈ Rn and a symmetric matrix B such that

lim
y→x

f(y)− f(x)− 〈p, y − x〉+ 〈B(y − x), y − x〉
|y − x|2

= 0.

(ii) The gradient of f , defined almost everywhere in Ω, belongs to the class BVloc(Ω,Rn).

Example. (Distance function) Let S ⊂ Rn be closed. The distance function from
a point to S is defined by

dS(x) = min
y∈S
|y − x|, (x ∈ Rn)

is locally semiconcave in Rn\S.

Exercise. Proving that

(1) dS(·) is locally semiconcave in Rn\S.

(2) dS(·) is not locally semiconcave in Rn.

(3) d2
S(·) is seminconcave with semiconcavity constant 2.
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Proposition 3.3 Let f : Ω → R be semiconcave with semiconcavity constant C.
Then, a vector p ∈ Rn belongs to D+f(x) if and only if

f(y)− f(x)− 〈p, y − x〉 ≤ C

2
· |y − x|2

for every y ∈ Ω such that [x, y] ⊂ Ω.

Exercise. Proving the above proposition.

Corollary 3.3 Let f : Ω → R be semiconcave with semiconcavity constant C and
let [x, y] ⊂ Ω. Then, for every p ∈ D+f(x), q ∈ D+f(y), it holds

〈q − p, y − x〉 ≤ 2C · |y − x|2.

Before going to give a presentation of superdifferential of a semiconcave function.
We introduce the concept of reachable gradient.

Definition 3.2 Let f : Ω→ Rn be locally Lipschitz. For every x ∈ Ω, we denote by

D∗f(x) =
{
p = lim

k→∞
Df(xk) | f is differentiable at xk and xk → x

}
.

From Rademacher’s Thereom, one can see that D∗f(x) is nonempty. In the case of
seminconcave function, we also have that

Proposition 3.4 Let f : Ω → R be semiconcave with semiconcavity constant C
and let x ∈ Ω. Then,

(i) D+f(x) = co(D∗f(x)) where co(D∗f(x)) is the convex hull of D∗f(x).

(ii) D+f(x) is singleton if and only if f is differentiable at x.

(iii) D+f(·) is upper semicontinuous.

(iv) if D+f(y) is singleton in the neighborhood Ox of x then f(·) is C1 in Ox.

To conclude this subsection, we are now discussing on the singular set of f . We
denote by

Σf = {x ∈ Ω | f is not differentiable at x}.
From proposition 3.4, if f be semiconcave then

Σf = {x ∈ Ω | dimHD
+f(x) ≥ 1}. (3.9)

The followings hold:

Theorem 3.3 Let f : Ω → R be semiconcave. Then, Σf is countable H(n−1)-
rectifiable. More generally, if we denote by

Σk
f = {x ∈ Ω | dimHD

+f(x) ≥ k}

then Σk
f is countable H(n−k)-rectifiable.
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3.1.1 Semiconcavity and time optimal control

Consider the control systems
ẋ(t) = f(x(t), u(t)), t ∈ [0,+∞[ a.e.,

x(0) = x0,
(3.10)

where x0 ∈ Rn and

+ f : Rn × U → Rn is the dynamics of the control system

+ U ⊂ Rm is the control set

+ u : [0,+∞[→ U is a control function.

Standard hypotheses

(H1) f : Rn × U → Rn is Lipschitz

|f(y, u)− f(x, u)| ≤ L1 · |y − x|, for all x, y ∈ Rn, u ∈ U. (3.11)

Moreover, the gradient of f with respect to x exists everywhere and is locally
Lipschitz in x, uniformly in u.

(H2) U is compact.

The set of admissible control is

Uad =
{
u : [0,∞)→ U | u is measurable

}
.

For every u ∈ Uad, we recall that yx0,u(·) is the trajectory staring from x with control
u which is the unique solution of (3.10). The minimum time needed to steer x to the
closed target S, regarded as a function of x, is called the minimum time function
and is denoted by

TS(x) := inf {t ≥ 0 | yx,u(t) ∈ S, u ∈ Uad}. (3.12)

Now, we define
H(x, p) = sup

u∈U
〈p, f(x, u)〉. (3.13)

By the dynamic programming principle, one can show that TS(·) is a vicosity solution
of Hamilton-Jacobi-Bellman equation

H(x,∇TS(x))− 1 = 0, for all x ∈ R\S, (3.14)

i.e., for all x ∈ R\,

H(x, p)− 1 ≥ 0, for all p ∈ D−TS(x),

H(x, p)− 1 ≤ 0, for all p ∈ D+TS(x),

56



where R is the reachable set denoted by

R = {x ∈ Rn | TS(x) <∞}.

In particular, the equation (3.14) hold at all differentiability points of TS(x). Thus,

H(x, p)− 1 = 0, for all x ∈ R\S, p ∈ D∗T (x).

It is well-known that TS is the unique viscosity solution of (3.14) in R\S satisfying
suitable boundary condition.

We want to study the properties of TS under the following controllability as-
sumption:

(H3) For very R > 0, there exist µR > 0 such that for all x ∈ (B(0, R) ∩ R)\S,
there is ux ∈ U :

f(x, ux) ·
x− πS(x)

|x− πS(x)|
≤ −µR. (3.15)

Proposition 3.5 Assume that system (3.10) satisfies (H1)-(H3). Then, TS is lo-
cally Lipschitz in Rd. Moreover, for every R > 0, it holds

TS(x) ≤ CR · dS(x), for all x ∈ (B(0, R) ∩R)\S

for some constant CR.

Therefore, TS(x) is differentiable almost everywhere in R\S and

H(x,∇TS(x))− 1 = 0, a.e. x ∈ R\S.

We now state the main result of this subsection (see in [?]).

Theorem 3.4 Assume that system (3.10) satisfies (H1)-(H3) and the target S sat-
isfies a ρ0-internal sphere condition, i.e., for every x ∈ ∂S, there exists x0 such that
x ∈ B′(x0, ρ0) ⊂ S. Then, TS(·) is locally semiconcave in R\S.

Sketch of proof. (The method of middle point)
Fixing any x ∈ R\S, let h ∈ Rn be such that [x − h, x + h] ⊂ R\S, one needs to
show that

TS(x+ h) + TS(x− h)− 2TS(x) ≤ Cx · |h|2. (3.16)

Let u∗(·) be an optimal control steering x to S in time TS(x). We define

y+
h (t) = yx+h,u∗(t), y(t) = yx,u

∗
(t) and y−h (t) = yx−h,u

∗
(t).

By the dynamics programming principle, we have that

TS(x+ h) + TS(x− h)− 2TS(x) ≤ T (y+
h (t)) + T (y−h (t))− 2T (y(t)). (3.17)
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Moreover, observing that

|y+
h (t) + y−h (t)− 2y(t)| ≤ C · |h|2. (3.18)

From (3.17), (3.18) and the locally Lipschitz continuity of TS , we finally obtain that

TS(x+h)+TS(x−h)−2TS(x) ≤ T (y+
h (t))+T (y−h (t))−2T

(y+
h (t)) + T (y−h (t)

2

)
+C1|h|2.

Therefore, we only need to study the semiconcavity property of TS(·) near to the
target S. We leave the rest part for the reader.

3.2 External sphere condition

3.2.1 Sets with finite perimeter

Let us first recall some basic concepts from geometric measure theory.

Definition 3.3 Let A ⊆ Rd and 0 ≤ p ≤ d. The p-dimensional Hausdorff measure
Hp(A) is defined by Hp(A) = lim

δ→0+
Hp
δ(A), where

Hp
δ(A) = ωp · inf

{
∞∑
i=1

(diam(Ui))
p : A ⊆

⋃
i

Ui, diam(Ui) < δ

}
,

and

ωp :=
2pΓ(p

2
+ 1)

πp/2
, Γ(p) :=

∫ ∞
0

tp−1 e−t dt.

The constant ωp is chosen so that Hp(A) equals the Lebesgue measure Lp(A) if p ∈ N
and A is a subset of a p-dimensional subspace of Rd.

Moreover,

• The Hausdorff dimension dimH(A) of A by setting:

dimH(A) := inf{d ≥ 0 : Hd(A) = 0}.

• Let k ∈ N, we say that A ⊂ Rd is countably k-rectifiable if

A ⊂ N ∪
∞⋃
i=1

Si

where Si are suitable Lipschitz k-dimensional surfaces andN is aHk-negligible
set.

• We say A is k-rectifiable if it is countably k-rectifiable and Hk(A) <∞, while
A is locally k-rectifiable if A∩K is k-rectifiable for any compact set K ⊂ Rd.
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Lemma 3.1 Given an open subset Ω of Rd and a Lipschitz continuous function
f : Ω → Rm, with Lipschitz rank L ≥ 0, for every 0 ≤ k ≤ d, the estimate
Hk(f(S)) ≤ LkHk(S) holds for all S ⊆ Ω.

The concepts of functions of bounded variation and of sets with finite perimeter
will also be used:

Definition 3.4 Let Ω ⊂ Rd be open, and u ∈ L1(Ω). We say that u is a function
of bounded variation in Ω (denoted by u ∈ BV (Ω)) if the distributional derivative
of u is representable by a finite Radon measure in Ω, i.e., if∫

Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDiu for all ϕ ∈ C∞c (Ω), i = 1, . . . , d

for some Radon measure Du = (D1u, . . . , Ddu). We denote by ‖Du‖ the total
variation of the vector measure Du, i.e.

‖Du‖(Ω) := sup

{∫
Ω

u(x)divφ(x) dx : φ ∈ C1
c (Ω,Rd), ‖φ‖L∞(Ω) ≤ 1

}
.

Accordingly, u ∈ L1
loc(Ω) is a function of locally bounded variation in Ω (denoted by

u ∈ BVloc(Ω)) if u ∈ BV (U) for every U ⊆ Ω open and bounded with U ⊂ Ω.

Lemma 3.1 Let f ∈ BV (a, b); then there exists a measurable set I ⊆ (a, b) such
that L1(I) = b− a and

‖Df‖(a, b) ≥ |f(t)− f(s)| for any t, s ∈ I .

Definition 3.5 Let E ⊂ Rd be Ld-measurable, and let Ω ⊆ Rd be open. E has finite
perimeter in Ω if its characteristic function

χE(x) :=

{
1, if x ∈ E,
0, otherwise,

has bounded variation in Ω, and we say that the perimeter of E in Ω is P (E,Ω) =
‖DχE‖(Ω). We say that E has perimeter locally finite in Ω if P (E,U) < +∞ for
every open bounded subset U of Ω with U ⊂ Ω.

Definition 3.6 Let µ be a Radon measure on Rd, and let M be the union of all
open sets U ⊂ Rd such that µ(U) = 0; the complement of M is called the support of
µ and it is denoted by supp(µ).

The following concept of normal vector was introduced by De Giorgi.
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Definition 3.7 Let Ω be a nonempty open subset of Rd and E ⊂ Rd be a set of
finite perimeter in Ω; we call reduced boundary of E in Ω the set ∂∗E of all points
x ∈ supp(‖DχE‖) ∩ Ω such that

νE(x) := lim
ρ→0+

DχE(B(x, ρ))

‖DχE(B(x, ρ))‖
=

dDχE
d‖DχE‖

(x)

exists in Rd and satisfies ‖νE(x)‖ = 1. The function −νE : ∂∗E → Rd is called the
De Giorgi outer normal to E in x.

Finally, the following measure-theoretic concepts will be used in our analysis.

Definition 3.8 Let E ⊂ Rd be a Borel set. We set, for x ∈ Rd and 0 ≤ k ≤ d,

δkE(x) = lim inf
ρ→0+

Hk(E ∩B(x, ρ))

ωkρk
,

where ωk is the k-dimensional Lebesgue measure of the unit ball in Rk. It is well
known that for k = d the limit actually exists and is equal to 1 for Ld-a.e. x ∈ E.

Definition 3.9 Let E ⊆ Rd be Ld-measurable. We define:

E0 := {x ∈ Rd : δdE(x) = 0}, the measure theoretic exterior of E;

E1 := {x ∈ Rd : δdE(x) = 1}, the measure theoretic interior of E;

∂ME := Rd \ (E0 ∪ E1), the measure theoretic boundary of E.

Concerning the relations among the above introduced concepts of boundary, we
recall the following (see Theorem 3.61, p. 158, in [?]).

Theorem 3.5 (De Giorgi-Federer) Let Ω be a nonempty open subset of Rd and
E ⊆ Rd be a set of finite perimeter in Ω. Then

∂∗E ∩ Ω ⊆
{
x ∈ Rd : δdE(x) = 1/2

}
⊆ ∂ME ⊆ ∂E,

and
Hd−1

(
Ω \ (E0 ∪ ∂∗E ∪ E1)

)
= 0.

In particular, E has density either 0, or 1
2
, or 1 atHd−1−a.e. x ∈ Ω, andHd−1(∂ME\

∂∗E) = 0.

We conclude this subsection with the following criterion for sets with finite
perimeter.

Theorem 3.6 (Federer) Let Ω be a nonempty open subset of Rd and E ⊆ Rd be
measurable. If Hd−1(∂(Ω ∩ E)) < +∞ then P (E,Ω) < +∞.
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3.2.2 External sphere condition

We now introduce new concepts for sets which is associated with semiconcavity
concepts. Basing on these ones, we can extend to study the regularity of a class of
continuous functions which is applied to time optimal control.

Definition 3.10 Let Q ⊂ Rd be closed and v ∈ Rd. We say that v is a proximal
normal vector to Q at x ∈ ∂Q, denoted by v ∈ NP

Q (x), if there exists a constant
σ > 0 such that

〈v , y − x〉 ≤ σ · |y − x|2, for all y ∈ Q. (3.19)

Equivalently v ∈ NP
Q (x) if and only if there exists λ > 0 such that πQ(x+λv) = {x}.

Definition 3.11 Let Q ⊂ Rd be closed and x ∈ ∂Q. The vector v ∈ NP
Q (x) is

realized by a ball of radius ρ if and only if (3.19) satisfies for σ = |v|
2ρ

.

We are ready to give the main concept for this subsection.

Definition 3.12 Let Q ⊂ Rd be closed and let θ(·) : ∂Q → (0,∞) be continuous.
We say that Q satisfies the θ(·)-external sphere condition if and only if for every
x ∈ ∂Q, there exists a vector vx 6= 0 such that vx ∈ NP

Q (x) is realized by a ball of
radius θ(x), i.e., 〈 vx

|vx|
, y − x

〉
≤ 1

2θ(x)
|y − x|2.

for all y ∈ Q.

We will say that Q satisfies the ρ0-external sphere condition for a constant ρ0 > 0
if ρ(·) = ρ0. We are now going to study the main properties of sets which satisfies
an external sphere condition.

Theorem 3.7 (Locally finite perimeter) Let Q ⊂ Rd be closed. Assuming that
Q satisfies the θ(·)-external sphere condition. Then, ∂Q ∩ O is finitely Hd−1-
rectifiable for any bounded, open set O. In particular, Q has locally finite perimeter.

Proof. SinceO is bounded, we have thatO is compact. Therefore, there is a constant
ρ0 > 0 such that for every x ∈ ∂Q ∩ O, there exists a unit vector vx ∈ NP

Q (x) is
realized by a ball of radius ρ0, i.e.,

〈vx, y − x〉 ≤
1

2ρ0

|y − x|2.

for all y ∈ Q.

1. By the compactness of Sd−1, we can find M1 ∈ N and a finite set {v1, ..., vM1} ⊂
Rd−1 such that

Sd−1 ⊂
M1⋃
i=1

vi +
1

3
B′(0, 1)
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where Sd−1 = {v ∈ Rd | |v| = 1} is the unit sphere with center 0. We partition ∂Q
as

∂Q =

M1⋃
i=1

∂Qi (3.20)

where

∂Qi :=
{
x ∈ ∂Q

∣∣∣ |vx − vi| ≤ 1

3

}
.

One has first that

∂Q ∩ O =
M⋃
i=1

∂Qi ∩ O. (3.21)

Moreover, for every x ∈ ∂Qi ∩ O, it holds

〈vi, y − x〉 ≤ 〈vx, y − x〉+ |vi − vx| · |y − x|, for all y ∈ Q

≤
( 1

2ρ0

|y − x|+ 1

3

)
· |y − x|

for all y ∈ Q. Therefore, for every x, y ∈ ∂Qi ∩ O, we have that

|〈vi, y − x〉| ≤
( 1

2ρ0

|y − x|+ 1

3

)
· |y − x|. (3.22)

2. We are now going to show that ∂Qi ∩ O is finitely Hd−1-rectifiable for all i ∈
{1, ..,M}. Fixing any i ∈ {1, ..,M1}, since ∂Qi ∩O is compact, there exists M2 ∈ N
and x1, ..., xM2 such that

∂Qi ∩ O ⊂
M2⋃
k=1

B′(xk, δ),

where δ = ρ0
6
. Setting ∂Qk

i = ∂Qi ∩ O ∩B′(xk, δ), we have that

∂Qi ∩ O =

M2⋃
k=1

∂Qk
i . (3.23)

Moreover, by (3.22) and the choice of δ, we have that for every x, y ∈ ∂Qk
i , it holds

|〈vi, y − x〉| ≤
1

2
· |y − x|.

Now, let v⊥i be the subspace of Rd which is orthogonal to vi. Let πi(·) be the
projection on v⊥i . From (3.23), one shows that

|πi(y)− πi(x)| ≥ 1√
2
· |y − x|, for all x, y ∈ ∂Qk

i .

Thus, πi : ∂Qk
i → v⊥i is injective. Hence, if we set Aki = πi(∂Q

k
i ) ⊂ v⊥i , the map

π−1
i : Aki → Qk

i is Lipschitz with constant
√

2. Therefore, ∂Qi ∩ O is finitely Hd−1-
rectifiable. By recalling (3.21), ∂Q ∩ O is finitely Hd−1-rectifiable.

62



3. Finally, noting thatHd−1(Aki ) < +∞, it implies thatHd−1(∂Qk
i ) ≤ 2

d−1
2 Hd−1(Aki ) ≤

+∞. Recalling (3.21), we obtain that Q∩O has finite perimeter. The proof is com-
plete.

Theorem 3.8 Let Q ⊂ Rd be closed. Assuming that Q satisfies the θ(·)-external
sphere condition. For every k ∈ {1, ..., d− 1}, we denote by

∂Qk =
{
x ∈ ∂Q | dimHN

P
Q (x) ≥ k

}
.

Then, ∂Qk is countably Hd−k-rectifiable.

Proof. The proof is based of the same technique of the previous theorem.

Exercise 15. Proving the about theorem for k = 2.

We now recall the definition of Fréchet normal vector of a set.

Definition 3.13 Let Q ⊂ Rd be closed and v ∈ Rd. We say that v is a Fréchet
normal vector to Q at x, denoted by v ∈ NF

Q (x), if

lim sup
y∈Q→x

〈
v ,

y − x
|y − x|

〉
≤ 0. (3.24)

Lemma 3.2 Let Q ⊂ Rd be closed. Assuming that Q satisfies a θ(·)-external sphere
condition. Then, the map NF

Q (·) : ∂Q⇒ Rd is upper-semicontinuous, i.e.,

lim
y→x

NF
Q (y) ⊆ NF

Q (x).

Proposition 3.6 Let Q ⊂ Rd be closed. Assuming that Q satisfies a θ(·)-external
sphere condition. Then, the set Q is smooth in ∂Q1, i.e., for every x ∈ ∂Q1, it holds

lim
y∈∂Q→x

〈
vx ,

y − x
|y − x|

〉
= 0,

where vx is the unique unit proximal normal vector to Q at x.

Proof. Assume by a contradiction, there exists a sequence {yn} ⊂ ∂Q converging to
x such that 〈

− vx ,
yn − x
|yn − x|

〉
≥ δ (3.25)

for a constant δ > 0 and for all n ∈ N. Let vn be the unit proximal normal vector
to Q at yn realized by a ball of radius θ(yn). Since yn converges to x, there exists a
constant ρ0 such that for every n, it holds

〈vn, z − yn〉 ≤ ρ0 · |z − yn|2, for all z ∈ Q. (3.26)
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Therefore, vn must converge to vx. On the other hand, from the above inequality,
we get in particularly that

〈vn, x− yn〉 ≤ ρ0 · |x− yn|2.

It implies that 〈
vn ,

x− yn
|x− yn|

〉
≤ ρ0 · |x− yn|.

Since limn→∞ vn = vx and limn→∞ yn = x, we obtain that〈
vx ,

x− yn
|x− yn|

〉
≤ 0.

This contradicts to (3.25). The proof is complete.

3.2.3 External sphere condition and semiconcavity

In this subsection, we will make a the connection between external sphere condi-
tion and semiconcavity. Given any open set Ω in Rn, let f : Ω → R be upper
semicontinuous function. Denote by

hypo(f) := {(x, β) | x ∈ Ω, β ≤ f(x)}

the hypograph of f . The following holds:

Theorem 3.9 The function f is locally semiconcave in Ω if and only if f is locally
Lipschitz and hypo(f) satisfies a θ(·) external sphere condition.

Proof. 1. Assume that f is locally semiconcave. From proposition (3.2), we have
that f is locally Lipschitz in Ω. We now prove that hypo(f) satisfies a θ(·) external
sphere condition. For every x ∈ Ω, there exists vx ∈ Df−(x) such that

f(y)− f(x)− 〈vx, y − x〉 ≤
Cx
2
· |y − x|2, for all y ∈ B(x, δx) (3.27)

where Cx is a suitable constant and δx is a suitable constant such that B(x, δx) ⊂ Ω.
It implies that〈

(−vx, 1), (y − x, f(y)− f(x))
〉
≤ Cx

2
· |y − x|2, for all y ∈ B(x, δx).

Therefore, there exists ρx > 0 be such that〈 (−vx, 1)

|(−vx, 1)|
, (y − x, β − f(x))

〉
≤ ρx ·

(
|y − x|2 + |β − f(x)|2

)
Thus, (−vx, 1) ∈ NP

hypo(f)(x, f(x)) is realized by a ball of radius 1
2ρx

. From here, one

can show that hypo(f) satisfies a θ(·) external sphere condition.

2. For the reversed side, we prefer to leave as an exercise.
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Remark 3.2 Thereom 3.3 is a particular case of theorem 3.8. Moreover, (ii)-(iv)
of proposition 3.4 are consequences of proposition 3.6.

Let’s now study the regularity properties a class of continuous functions whose
hypograph satisfies an external sphere condition. From theorem 3.9, such class is
a generalization of the class of semiconcave functions and is applied to study the
regularity of the minimum time function under a weak controllability condition. We
denote by

Fρ(Ω,R) = {f ∈ C(Ω,R) | hypo(f) satifies the ρ− extermal sphere condition}

where C(Ω,R) is the class of continuous function from Ω to R.

Definition 3.14 For every x ∈ Ω, the unit vector v ∈ Sn−1 is a horizontal superdif-
ferential of f ∈ Fρ(Ω,R) at x, denoted by v ∈ ∂∞f(x), if

(−v, 0) ∈ NP
hypo(f)(x, f(x)).

Remark 3.2 Let f : Ω → R be continuous. If f is Lipschitz in a neighborhood of
x ∈ Ω then the set ∂∞f(x) is empty.

Exercise. Prove the above Remark.

From the general function f ∈ Fρ(Ω,R), one may have that the set ∂∞f(x) is
non-empty at many points x ∈ Ω. We set

Sf = {x ∈ Ω | ∂∞f(x) 6= ∅}.

Thanks to the ρ-external sphere condition, the following holds:

Proposition 3.7 Assuming that f ∈ Fρ(Ω,R). Then, the set Sf is closed in Ω.

Sketch of the proof. 1. For every x ∈ Sf , there exists v ∈ Sn−1 such that
(−v, 0) ∈ NP

hypo(f)(x, f(x)) is realized by a ball of radius ρ, i.e.,

〈−v, y − x〉 ≤ ρ · (|y − x|2 + |β − f(x)|2), for all y ∈ Ω, β ≤ f(y).

Indeed, let (−w, 0) ∈ NP
hypo(f)(x, f(x)), along the ray x(t) = x−t·w (t > 0), by using

Clarke’s density theorem, one can find a sequence xn converge to x such that f is
differentiable at xn and limn→∞ |Df(xn)| = +∞. Moreover, since f is differentiable
at x, we have that (−Df(xn), 1) ∈ NP

hypo(f)(xn, f(xn)) realized by a ball of radius ρ.

Therefore, there exists a subsequence {xnk} converge to x such that

lim
nk→∞

(−Df(xnk , 1)

|(−Df(xnk , 1)|
= (−v, 0).

Thus, (−v, 0) ∈ NP
hypo(f)(x, f(x)) is realized by a ball of radius ρ.
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2. Taking any xn ∈ Sf converging to x ∈ Ω. From the first step, there exists
vn ∈ Sn−1 such that (−vn, 0) ∈ NP

hypo(f)(xn, f(xn)) is realized by a ball of radius ρ.

Hence, there exists (−vx, 0) ∈ NP
hypo(f)(x, f(x)) is realized by a ball of radius ρ.

In the followings, we would like to estimate the size of Sf by using the Hausdroff
measure.

Lemma 3.3 For any x ∈ Sf such that NP
hypo(f)(x, f(x)) = R+ · (v, 0) for some

v ∈ Sn−1, there is δ0 = δ0(x) > 0 such that

‖Df‖Sq(x,δ) ≥ 2n−2 · δn−
1
2 , for all 0 < δ < δ0 (3.28)

where Sq(x, δ) :=
{

(y1, . . . , yn) ∈ Rn : max
i=1,...,n

|yi−xi| < δ
}

. In particular, this would

imply that
‖Df‖B(x,δ) ≥ 2−

3
2 · δn−

1
2 , for all 0 < δ < δ0. (3.29)

Proof. Without loss of generality we will assume that

x = 0 ∈ Ω, f(x) = 0 and NP
hypo(f)(0, 0) = R+(e1, 0).

For any δ > 0, we define

Rδ :=

{
y = (y1, . . . , yn) ∈ Sq(0, δ) :

3

4
δ < y1 < δ

}
,

Sδ := {y = (y1, . . . , yd) ∈ Sq(0, δ) : −δ < y1 < −δ/2} .

1. We first claim that there exist δ1 > 0 such that for every δ ∈ (0, δ1) it holds


f(y) ≤ − 1

2
· δ for all y ∈ Rδ,

f(y) > 0 for all y ∈ Sδ.

(3.30)

Indeed, for any y ∈ Rδ, we have

3

4
· δ < 〈(e1, 0), (y, β)〉 ≤ ρ ·

(
‖y‖2 + |β|2

)
whenever

3

4
· δ ≤ ρ ·

(
nδ2 + |β|2

)
for all β ≤ f(y). (3.31)

In particular, this implies that

f(y) < 0 for all y ∈ Rδ

and thus the first inequality of (3.30) holds for δ > 0 sufficiently small.
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Let us now prove the second inequality in (3.30). Assume by contradiction that
there exist sequences {δk}k≥1 and {yk}k≥1 such that

δk −→ 0+, yk ∈ Sδk and f(yk) ≤ 0.

By the continuity of f , we have that

lim
k→∞

f(yk) = f(0) = 0.

On the other hand, let (vk, αk) ∈ NP
hypo(f)(yk, f(yk)) be a normal vector realized by

a ball of radius ρ and (vk, αk) converges to (e1, 0). For every β ≤ 0 = f(0), it holds〈
(vk, αk)

|(vk, αk)|
, (0, β)− (yk, f(yk))

〉
≤ ρ ·

(
‖yk‖2 + |β − f(yk)|2

)
.

By choosing β = f(yk), we obtain that

〈vk,−yk〉 ≤ C · ‖yk‖2.

and a direct computation yields

δk
2
− ‖vk − e1‖

√
n δk ≤ 〈e1,−yk〉+ 〈vk − e1,−yk〉 = 〈vk,−yk〉 ≤ Cn δ2

k.

Dividing both sides by δk and passing to the limit as k →∞ we obtain a contradic-
tion.

2. The Claim allows us to conclude: indeed, for any δ < δ0 := min{δ1, δ2} and any
z ∈ (−δ, δ)n−1 we get

|f(ya, z)− f(yb, z)| ≥
1

2
δ

1
2 for all ya ∈ ]3

4
δ, δ[, yb ∈ ]− δ,−δ/2[.

By virtue of Lemma 3.1, for any z ∈ (−δ, δ)d−1 there exist ya(z) ∈]3
4
δ, δ[ and yb(z) ∈

]− δ,−δ/2[ such that

‖Dfz‖(−δ, δ) ≥ |f(ya(z), z)− f(yb(z), z)| ≥ 1

2
δ

1
2

where fz := f(·, z). We obtain

‖Df‖(Sq(0, δ)) ≥
∫

]−δ,δ[n−1

‖De1f‖(z+ ]− δ, δ[e1)dz

=

∫
]−δ,δ[n−1

‖Dfz‖(−δ, δ)dz

≥ (2δ)n−1 · 1
2
δ

1
2 = 2n−2δn−

1
2 ,

where we have denoted by De1f the distributional derivative of f along e1 and by
z+ ]− δ, δ[·e1 the line segment joining (−δ, z) and (δ, z).

We are ready to prove the main result.
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Theorem 3.10 Let f be in Fρ(Ω,R). Then, Hn− 1
2 (Sf )∩U is finite for every U ⊂ Ω

open and bounded.

Proof. We divide the set Sf into two sets:

Sf = S1
f + S2

f

where

S1
f :=

{
x ∈ Sf | NP

hypo(f)(x, f(x)) = R+(v, 0)
}
,

S2
f :=

{
x ∈ Sf | dimHN

P
hypo(f)(x, f(x)) ≥ 2

}
.

Recalling 3.8, one can show that S2
f is Hn−1-countably rectifiable. In particular,

Hn− 1
2 (S2

f ) = 0. Hence, we only need to prove that Hn− 1
2 (S1

f ) ∩ U is finite.

We can construct a covering of S1
f ∩ U by setting:

B :=

{
(x+ rBn) : x ∈ S1

f ∩ U, r <
min{δ0(x), dist(U, ∂Ω)/2}

10

}
.

Since B is a fine covering of S1
f ∩U , by using Vitali’s covering Theorem, there exists

a countable subset of pairwise disjoint balls B′ := {xi + riBn : i ∈ N} ⊂ B such that⋃
B∈B

B ⊆
∞⋃
i=1

(xi + 5riBn),

which implies that {xi + 5riBn : i ∈ N} is a covering of S1
f ∩ U and⋃

i∈N

(xi + 5riBn) ⊆ (U + cBn) =: W

for a suitable constant c > 0 and thus W is an open bounded subset of Ω.

|Df |(W ) ≥ |Df |

(
∞⋃
i=1

(xi + 5riBn)

)

≥
∞∑
i=1

|Df |(xi + riBn) ≥
∞∑
i=1

2−
3
2 · rn−

1
2

i ≥ C · Hn− 1
2 (S1

f ).

and this implies that |Df |(W ) < +∞. Therefore, Hn− 1
2 (S1

f ) < +∞. The proof is
complete.

Corollary 3.4 Let f be in Fρ(Ω,R). Then, Ln(Sf ) = 0.

We conclude this subsection with the following theorems.

Theorem 3.11 Let f be in Fρ(Ω,R). Then, f is locally semiconcave in the open
set Ω\Sf . In particular, f is a.e. twice diffrentiable in Ω.

Excercise 18. Prove the above theorem.

Theorem 3.12 Let f : Ω → R be continuous. Assuming that hypo(f) satisfies a
θ(·)-external sphere condition. Then, f is locally semiconcave in the open set Ω\Sf .
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4 Introduction to scalar conservation laws

Let’s consider 1D Hamilton-Jacobi equation

Vt +H(Vx) = 0 for all (t, x) ∈ [0,+∞[×R (4.1)

where the Hamiltonian H : R→ R is smooth, convex and coercive, i.e.,

lim
p→+∞

H(p)

|p|
= +∞.

It is known that the Cauchy problem (4.1) with a Lipschitz initial data admits
a unique Lipschitz viscosity solution V . In particular, V is differentiable almost
everywhere and thus we can define

u(t, ·) = Vx(t, x) for a.e. x ∈ R.

for every t > 0. Assume that u is smooth then it is a classical solution of the
following equation

ut(t, x) +H ′(u) · ux(t, x) = 0.

The above equation can be rewritten in the conservative form

ut + [H(u)]x = 0. (4.2)

In one dimensional case, (4.1) and (4.15) have a strong connection. Indeed, one can
show that if V is a viscosity solution of (4.1) then u = Vx is an entropy admissible
solution of (4.15). The concept of entropy admissible solution will be introduced
later.

4.1 The method of characteristic and non-smooth solution

In this section, we would like to study the scalar conservation laws in one space
variable

ut + [f(u)]x = 0 (t, x) ∈ [0.+∞[×R (4.3)

where

• f : R→ R is a given flux;

• u : [0,+∞[×R→ R is the conserved quantity.

To feel the above equation better, let us give a typical example on traffic flow for
(4.3).

Example 1. (Traffic flow) On a single road, let’s denote by

• ρ(t, x) is the traffic density at the location x at time t.
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• v is the velocity of cars which depends on the traffic density such that

v = v(ρ) with
dv

dρ
< 0.

• The flux
f(ρ)

.
= ρ · v(ρ)

describes the total number of cars crossing the location x at time t.

Giving two locations a and b on the road, the integral∫ b

a

ρ(t, x) dx = total number of cars in [a, b] at time t .

ρ

x

   

a b

= density of cars

We compute

d

dt

∫ b

a

ρ(t, x) dx = f(ρ(t, a))− f(ρ(t, b))

= −
∫ b

a

d

dx
f(ρ(t, x)) dx .

This implies that∫ b

a

ρt(t, x) + f(ρ(t, x))x dx = 0 for all a < b .

A PDE for traffic flow
ρt(t, x) + f(ρ(t, x))x = 0 . (4.4)

GOAL: Describe the traffic density at time t. In other words, one would like to fine
a solution to (4.4) for a give initial desity ρ0.

Assume that f ∈ C1(R) and u is a smooth solution of the Cauchy problem ut + f(u)x = 0 ,

u(x, 0) = Φ(x)
(4.5)
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In this case, one can write the above equation as a quasilinear equation

ut(t, x) + f ′(u(t, x)) · ux(t, x) = 0.

The method of characteristic. Let x(t) be the solution of

ẋ(t) = f ′(u(x(t), t)), x(0) = β .

The curve (x(t), t) is called a characteristic curve.

Observe that

d

dt
u(x(t), t) = ut(x(t), t) + ẋ(t) · ux(x(t), t)

= ut(x(t), t) + f ′(u(x(t), t)) · ux(x(t), t) = 0 .

This implies that the function u is constant along the characteristic curve (x(t), t).
In particular, we have

u(x(t), t) = u(x(0), 0) = Φ(β) . (4.6)

Hence,
f ′(u(x(t), t)) = f ′(Φ(β)) ,

and it yields
x(t) = f ′(Φ(β)) · t+ β .

Recalling (4.6), we obtain the general formula for the solution

u(ξ + f ′(Φ(β))t, t) = Φ(β) .

Remark. The method can be applied as long as the solution is smooth.

Example 2. Solve the Burger’s equation with initial condition ut +

(
u2

2

)
x

= 0 ,

u(x, 0) = x

Answer. Since f ′(u) = u and Φ(x) = x, one has

f ′(Φ(β)) = β .

Thus,
u(β + β · t, t) = Φ(β) = β .

Set x = β + β · t, we have

β =
x

1 + t
.
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and this implies

u(x, t) =
x

t+ 1
.

for all (t, x) ∈ [0,+∞[×R

Example 3 (shock formation in Burgers’ equation) Consider the scalar con-
servation law (inviscid Burgers’ equation)

ut +

(
u2

2

)
x

= 0 ,

u(x, 0) = ū(x) =
1

1 + x2
.

(4.7)

Assume that u is smooth up to time T > 0. In this case, u must be constant along
the characteristic lines in the t-x plane:

t 7→ (t, x+ tū(x)) =

(
t, x+

t

1 + x2

)
.

Moreover, these characteristic lines do not intersect before time T . This implies that
the continuous map

x 7→ x+
t

1 + x2

is one-to-one for every t ≤ T . Thus, x 7→ x+
t

1 + x2
is monotone increasing and

d

dx

(
x+

t

1 + x2

)
= 1− 2tx

(1 + x2)2
≥ 0 for all t ∈ [0, T ], x ∈ R. (4.8)

A direct computation yields

min
x∈R

(
1− 2tx

(1 + x2)2

)
= 1− t

√
27

8
for all [0, T ].

Thus, (4.7) admits a smooth solution up to time t <
8√
27

and then generates a

discontinuity at time t =
8√
27

.

4.2 Entropy admissible weak solutions

The above example showed that a basic feature of nonlinear systems of the form (4.3)
is that, even for smooth initial data, the solution of the Cauchy problem may develop
discontinuities in finite time. In order to prolong solution to (4.3) after the formation
of discontinuity we must adopt a weak concept of solution in distributional senses
which allow the presence of discontinuities in the solution or in its space derivatives.

72



4.2.1 Weak solutions

Definition 4.1 A function u ∈ L∞(]0, T [×R,R) is a weak solution of the scalar
conservation laws

ut + [f(u)]x = 0,

if for every ϕ ∈ C1(]0, T [×R,R) with compact support, it holds∫ ∫
]0,T×R

[u(t, x)ϕt(t, x) + f(u(t, x))ϕx(t, x)] dtdx = 0. (4.9)

Remark 4.2 (Classical solution) A function u ∈ C1(]0, T [×R,R) is a classical
solution of (4.3) if and only if u is a weak solution of (4.3).

Proof. 1. Assume that u is a classical solution of (4.3). For a given ϕ ∈
C1(]0, T [×R,R) with compact support, we consider the vector field

v(t, x) = (u(t, x) · ϕ(t, x), f(u(t, x)) · ϕ(t, x)).

Let Ω ⊂]0, T [×R be an open set such that supp(v) ⊂ Ω. By the divergence theorem,
we have

0 =

∫
∂Ω

v · nds =

∫ ∫
]0,T [×R

div vdtdx (4.10)

=

∫ ∫
]0,T [×R

[ut + f(u)x] · ϕdtdx+

∫ ∫
]0,T [×R

uϕt + f(u)ϕxdtdx (4.11)

=

∫ ∫
]0,T [×R

uϕt + f(u)ϕxdtdx (4.12)

and this implies that u is a weak solution of (4.3).

2. Assume that u is a weak solution but not a classical solution of (4.3). Since u is
smooth, there exists a point (t0, x0) such that

ut(t0, x0) + [f(u(t0, x0))]x 6= 0.

Without loss of generality, we will assume that the left hand side of the above
equation is positive. By the smoothness of u and f , it holds

ut(t, x) + [f(u(t, x))]x > 0

for every (t, x) in Bδ(t0, x0) ⊂]0, T [×R for some δ > 0 small. Consider a nonnegative
and nonzero function ϕ ∈ C1(]0, T [×R,R) with a compact support such that

ϕ(t, x) =


0 (t, x) ∈]0, T [×R\Bδ(t0, x0)

d∂Bδ(t0, x0) (t, x) ∈ Bδ(t0, x0).
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Apply this test function to (4.9), we obtain that

0 =

∫ ∫
]0,T [×R

u(t, x)ϕt(t, x) + f(u(t, x))ϕx(t, x)dtdx

= −
∫ ∫

]0,T [×R
[ut(t, x) + f(u)x(t, x)] · ϕ(t, x)dtdx < 0,

and this yields a contradiction.

Lemma 4.3 (Closure of set of weak solutions in L1
loc) Let (un)n≥1 be a sequence

of weak solutions of (4.3) such that

un −→ u and f(un) −→ f(u) in L1
loc. (4.13)

Then the limit function u is also a weak solution of (4.3). Moreover, the same
conclusion holds if un −→ u in L1

loc and

un(R) ⊆ K for all n ≥ 1

for some compact set K.

Proof. Assume that (4.13) holds. For every ϕ ∈ C1(]0, T [×R,R) with compact
support, we has∫ ∫

]0,T [×R
unϕt + f(un)ϕxdtdx =

∫ ∫
Ω

unϕt + f(un)ϕxdtdx

and ∫ ∫
]0,T [×R

uϕt + f(u)ϕxdtdx =

∫ ∫
Ω

uϕt + f(u)ϕxdtdx

for some open bounded set. Thus,

lim sup
n→∞

∣∣∣∣∫ ∫
]0,T [×R

[unϕt + f(un)ϕx]− [uϕt + f(u)ϕx]dtdx

∣∣∣∣
≤
(

lim sup
n→∞

∫ ∫
Ω

|un − u|+ |f(un)− f(u)|dtdx
)
· ‖∇ϕ‖∞ = 0.

and this implies that∫ ∫
]0,T [×R

uϕt + f(u)ϕxdtdx = lim
n→∞

∫ ∫
]0,T [×R

unϕt + f(un)ϕxdtdx = 0.

Therefore, u is a weak solution of (4.3).

Let us now derive a consequence of conservation form of (4.3). Given any time
t1, t2 ∈]0, T [, consider a domain

Ω = {(t, x) | t ∈ [t1, t2], γ1(t) < x < γ2(t)}

for some γi : [t1, t2]→ R Lipschitz curves.
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Remark 4.4 If u is a classical solution of (4.3) then∫ γ2(t2)

γ1(t2)

u(t2, x)dx−
∫ γ2(t1)

γ1(t1)

u(t1, x)dx

=

∫ t2

t1

γ̇2(t)u(t, γ2(t))− f(u(t, γ2(t)))dt−
∫ t2

t1

γ̇1(t)u(t, γ1(t))− f(u(t, γ2(t)))dt.

(4.14)

Proof. Applying the divergence theorem to the vector field

v(t, x) = (u(t, x), f(u(t, x))),

we find that

0 =

∫ ∫
Ω

ut + [f(u)]xdtdx =

∫ ∫
Ω

div vdtdx =

∫
∂Ω

v · nds

=

∫ t2

t1

γ̇1(t)u(t, γ1(t))− f(u(t, γ1(t)))dt+

∫ γ2(t2)

γ1(t2)

u(t2, x)dx

−
∫ t2

t1

γ̇2(t)u(t, γ2(t))− f(u(t, γ2(t)))dt−
∫ γ2(t1)

γ1(t1)

u(t1, x)dx.

This implies (4.14).

The formula (4.14) tell us that the variation of the quantity of u contained
between γ1 and γ2 at different times t1 < t2 is given by the flow of the vector field
v through the two curves γ1, γ2. It also holds for a week solution u provided that

(i) the map t 7→ u(t, ·) is continuous with values in L1
loc;

(ii) the map x 7→ u(t, x) is right continuous for all (t, x) ∈]0, T [×R, i.e.,

u(t, x) = lim
y→x+

u(t, y).

Let’s now define a weak solution of a Cauchy problem{
ut + [f(u)]x = 0

u(0, ·) = u0(·)
(4.15)

for a given u0 ∈ L1
loc(R).

Definition 4.5 A function u : [0, T ] × R → R is a weak solution of (4.15) if u is
a weak solution of (4.3) in the strip ]0, T [×R and the map t 7→ u(t, ·) is continuous
with values in L1

loc for t ∈ [0, T ] with u(0, ·) = u0(·).
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The following holds:

Lemma 4.6 If u : [0, T ] × R → R is a weak solution of (4.15) then u is also a
solution of (4.15) in the distributional sense, i.e., for every ϕ ∈ C1(]− 1, T [×R,R)
with compact support, it holds∫ ∫

]0,T×R
[uϕt + f(u)ϕx] dtdx+

∫ ∞
−∞

u0(x)ϕ(0, x)dx = 0.

Proof. Let ρ : R→ [0, 1] be a smooth function with supp(ρ) ⊂]0, 1[ and∫ 1

0

ρ(s)ds = 1.

For every ε > 0, denote by

ρε =
1

ε
· ρ
(
t

ε

)
and βε(t) =

∫ t

0

ρε(s)ds,

we set
ϕε(t, x) = βε(t) · ϕ(t, x) for all (t, x) ∈ [0, T ]× R.

It is clear that supp(ϕε) ⊂]0, T [×R and

lim
ε→0+

ϕε(t, x) = ϕ(t, x) for all (t, x) ∈ [0, T ]× R.

Using the continuity of the map t 7→ u(t, ·), we compute that

0 =

∫ ∫
]0,T×R

[uϕεt + f(u)ϕεx] dtdx

=

∫ T

0

∫ −∞
−∞

[uϕt + f(u)ϕx] · βε(t)dxdt+

∫ T

0

∫ ∞
−∞

uϕρε(t)dxdt.

Taking ε to 0+, we then obtain that∫ ∫
]0,T×R

[uϕt + f(u)ϕx] dtdx+

∫ ∞
−∞

u0(x)ϕ(0, x)dx = 0.

Therefore, u is a solution of (4.15) in the distributional sense.

4.2.2 Rankine-Hugoniot conditions

Let us first derive conditions which must be satisfied piecewise constant function

U(t, x) =

{
u+ if x > λ · t
u− if x < λ · t.

(4.16)

for some u±, λ ∈ R, to be a weak solution of (4.3).
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Lemma 4.7 The function U in (4.16) is a weak solution of (4.3) if any only if

λ · (u+ − u−) = f(u+)− f(u−). (4.17)

Proof. For every ϕ ∈ C1(]0,−∞[×R) with supp(ϕ) ⊂ Ω, we denote by

Ω+ = {(t, x) ∈ Ω | x > λt}, Ω+ = {(t, x) ∈ Ω | x < λt}.

Normal vectors to the line x = λt are

n+ = (λ,−1), n−(−λ, 1).

Consider the vector field

v(t, x) = (u(t, x) · ϕ(t, x), f(u(t, x)) · ϕ(t, x)).

By the divergence theorem, we obtain that∫ ∫
Ω

Uϕt + f(U)ϕxdxdt =

∫ ∫
Ω+

div vdxdt+

∫ ∫
Ω−

div vdxdt

=

∫
∂Ω+

v · n+ds+

∫
∂Ω−

v · n−ds

=

∫
[λu+ − f(u+)] · ϕ(t, λt)dt+

∫
[λ− u− + f(u−)] · ϕ(t, λt)dt

=

∫ [
λ · (u+ − u−)−

(
f(u+)− f(u−)

)]
· ϕ(t, λt)dt.

Therefore, U is a weak solution of (4.3) if and only if∫ [
λ · (u+ − u−)−

(
f(u+)− f(u−)

)]
· ϕ(t, λt)dt = 0

for all ϕ ∈ C1(]0,−∞[×R) with compact support. It is equivalent to (4.17).

Remark 4.8 The equation (4.17) is famous Rankine-Hugoniot (RH) condition.

Example. Consider the Burgers’ equation

ut +

(
u2

2

)
x

= 0.

Given two different state u+ 6= u−, we have

λ =
f(u+)− f(u−)

u+ − u−
=

u+ + u−

2
.

The function

u(t, x) =

{
u+ if x > u++u−

2
· t

u− if x < u++u−

2
· t.

is a weak solution.

To derive (RH) condition for general weak solutions of (4.3), let us introduce the
following:

77



Definition 4.9 (Approximate jump) We say that a function u ∈ L1
loc with value

in R has an approximate jump discontinuity at a point (t̄, x̄) if there exists u±, λ ∈ R
such that setting

U(t, x) =

{
u+ if x > λ · t
u− if x < λ · t.

there holds

lim
r→0+

1

r2

∫ ∫
[−r,r]2

∣∣u(t̄+ t, x̄+ x)− U(t, x)
∣∣dxdt = 0. (4.18)

In this case, u− and u+ are the left and the right approximate limit of u at (t̄, x̄),
and λ is the jump speed. Moreover, we say that u is approximately continuous at
(t̄, x̄) if (4.18) holds for a function U defined as in (4.16) with u− = u+.

We will show that (RH) condition is satisfied at any point of approximate jump
discontinuity of a weak solution of (4.3).

Proposition 4.9.1 Let u be a bounded weak solution of (4.3) having an approximate
jump discontinuity at a point (t̄, x̄), i.e., (4.18) holds for some u±, λ ∈ R. Then, the
Rankine-Hugoniot equation (4.17) holds.

Proof. 1. For any fixed θ > 0 sufficiently small, one can easily check that the
rescaled function

uθ(t, x) = u(t̄+ θt, x̄+ θx)

is a weak solution of (4.3). Indeed, for any test function ϕ ∈ C1(]0,∞[×R) with
compact support, we find∫ ∞

0

∫ ∞
−∞

[uθ(t, x)ϕt(t, x) + f(u(t, x))ϕx(t, x)]dxdt

=
1

θ2
·
∫ ∞
t̄

∫ ∞
−∞

[
u(τ, z)ϕt

(
τ − t̄
θ

,
z − x̄
θ

)
+ f(u(τ, z))ϕx

(
τ − t̄
θ

,
z − x̄
θ

)]
dτdz.

Since the function ϕθ(τ, z) = ϕ
(
τ−t̄
θ
, z−x̄

θ

)
is smooth with compact support, one has∫ ∞

0

∫ ∞
−∞

[uθϕt + f(u)ϕx]dxdt =
1

θ2
·
∫ ∞
t̄

∫ ∞
−∞

[
u(τ, z)ϕθt + f(u(τ, z))ϕθx

]
dτdz = 0.

Hence, uθ is a weak solution of (4.3).

2. We claim that uθ converges to U in L1
loc as θ → 0+. Indeed, for any R > 0, one

has that∫ R

−R

∫ R

−R

∣∣uθ(t, x)− U(t, x)
∣∣ dxdt

=
1

θ2
·
∫ θR

θR

∫ θR

−θR

∣∣∣u(t̄+ τ, x̄+ z)− U
(τ
θ
,
z

θ

)∣∣∣ dτdz
= R2 ·

[
1

[θR]2
·
∫ θR

θR

∫ θR

−θR
|u(t̄+ τ, x̄+ z)− U (τ, z)| dτdz

]
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Taking θ to 0+, we then obtain from (4.18) that

lim
θ→0+

∫ R

−R

∫ R

−R

∣∣uθ(t, x)− U(t, x)
∣∣ dxdt = 0.

3. Since u is bounded, the sequence of function uθ is also bounded. Thus, one

can apply Lemma 4.3 to derive that U is a weak solution of (4.3) and Lemma 4.28
implies the Rankine-Hugoniot condition.

To conclude this part, we will provide necessary and sufficient conditions for a
piecewise Lipschitz continuous function to be a weak solution. Here, we say that u is
piecewise Lipschitz if u is in L∞ and there exist a finite number of points Pi = (ti, xi)
and finitely many disjoint Lipschitz-continuous curves γj :]aj, bj[→ R such that

• For any point P outside the set
[
(
⋃
Pi)
⋃(⋃

j γ(]aj, bj[)
)]

, u is Lipschitz

continuous in B(P, r) for some r > 0;

• Given a point Q ∈ γj(]aj, bj[) for some j, there exists a neighborhood V of Q
such that u is Lipschitz continuous in

V + = V
⋂
{x > γj(t)} and V − = V

⋂
{x < γj(t)}

Assume that u is piecewise Lipscthiz, we can define

u+
j (t) = lim

x→γj(t)+
u(t, x) and u−j (t) = lim

x→γj(t)−
u(t, x).

Proposition 4.9.2 Let u : Ω→ R be piecewise Lipschitz. Then, the followings are
equivalent

(i) u is a weak solution of (4.3);

(ii) u satisfies the quasilinear equation

ut + f ′(u)ux = 0 (4.19)

for almost every (t, x). Moreover, for every jump curve γj one has

γ̇j(t) ·
[
u+
j (t)− u−j (t)

]
= f(u+

j (t))− f(u−j (t)) (4.20)

for almost every t ∈]aj, bj[.

Sketch of Proof. 1. Assume that u is a weak solution of (4.3). For any point

P out side the set
[
(
⋃
Pi)
⋃(⋃

j γ(]aj, bj[)
)]

, u is Lipschitz continuous in B(P, r)
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for some r > 0. For every given ϕ ∈ C1 with supp(u) ⊂ B(P, r), one applies the
divergence theorem to get

0 =

∫ ∫
B(P,r)

[ut + [f(u)]x] · ϕdtdx = 0.

Here, we used also Rademacher’s theorem to say that div (u, f(u)) is defined almost
everywhere in B(P, r) and is in L∞. Thus, u satisfies (4.19).

On the other hand, one can use Proposition 4.9.1 to show that (4.20) satisfies at
any time t where γj is differentiable.

2. Assume that u satisfies (ii). Let’s consider the case where the set (
⋃
Pi) is empty.

For every ϕ ∈ C1
c , one apply the divergence theorem for v = (uϕ), f(u)ϕ) to obtain

that

0 =

∫ ∫
Ω

uϕt + f(u)ϕxdtdx = −
∫ ∫

Ω

[ut + f ′(u)ux] · ϕdtdx

−
∑
j

∫ bj

aj

(
γ̇j(t) ·

[
u+
j (t)− u−j (t)

]
− [f(u+

j (t))− f(u−j (t))] · ϕ(t, γj(t))
)
dt.

Thus, u is a weak solution of (4.3).

3. For the general case where the set (
⋃
Pi) is non-empty. For every given ϕ ∈ C1

c ,
one can construct a sequence of (ϕn)n≥1 ⊂ C1

c such that

Pi /∈ supp(ϕn) for all i, n ≥ 1

and limn→+∞ ‖∇ϕn −∇ϕ‖L1 = 0. From the second step, one can obtain that

0 =

∫ ∫
Ω

uϕt + f(u)ϕxdtdx

= lim
n→+∞

[∫ ∫
Ω

uϕnt + f(u)ϕnxdtdx

]
= lim

n→+∞

[
−
∫ ∫

Ω

[ut + f ′(u)ux] · ϕdtdx

−
∑
j

∫ bj

aj

(
γ̇j(t) ·

[
u+
j (t)− u−j (t)

]
− [f(u+

j (t))− f(u−j (t))]
)
· ϕn(t, γj(t))dt

]
= 0.

The proof is complete.

4.2.3 Admissible conditions

Consider the Burgers’ equation

ut +

(
u2

2

)
x

= 0 with u(0, x) =


1 x ≥ 0

0 x < 0.
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For every α ∈ [0, 1], the piecewise constant function

uα(t, x) =


0 if x <

α

2
t

α if
α

2
t ≤ x <

α + 1

2
· t

1 if x ≥ 1 + α

2
·

is a weak solution of (4.3). This shows that the concept of weak solution is not
sufficient to single out a unique solution whenever a strong discontinuity appears in
the solution.

Our goal is to supplement the notion of weak solution with further admissibility
conditions, that can be present in a weak solution, in order to achieve uniqueness
and continuous dependence on the initial data of the solutions.

1. Vanishing viscosity: We say that a weak solution u : Ω→ R of (4.3) is admis-
sible in the vanishing viscosity sense if there exists a sequence of smooth solutions
of the viscous parabolic approximation

uεt + f ′(uε) · uεx = εuεxx (4.21)

so that uε converges to u in L1
loc as ε→ 0+.

In general, it is very difficult to establish a-priori estimates on solutions to (4.3)
that allow to prove the convergence as ε→ 0+ and to characterize the correspond-
ing limit. However, one can deduce from the vanishing viscosity condition other
conditions that can be more easily verified in practice.

2. Entropy conditions: Motivated by the second principle of theorem dynamics
for the Euler equation of gas, we introduce the concept of entropy which characterize
irreversible processes (Kinetic energy dissipates when a shock appears: a part of it
is transformed into heat).

Definition 4.10 (Entropy-Entropy flux) We say that a pair of C1 (or locally
Lipschitz) functions (η, q) : R→ R is an entropy-entropy flux pair for (4.3) if

q′(u) = η′(u) · f ′(u) (4.22)

at every u where η, q and f are differentiable.

Notice that if u is a classical solution of (4.3) then u solves the equation

[η(u)]t + [q(u)]x = 0. (4.23)
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Remark 4.11 In this case, η(u) is conserved. However, when u is discontinuous,
in general the quantity η(u) is not conserved.

Indeed, let’s consider the Burgers’ equation

ut +

(
u2

2

)
x

= 0

and a pair of entropy-entropy flux

(η, q) =

(
u3,

3

4
· u4

)
for all u ∈ R.

The following function

u(t, x) =


1 if x <

t

2

0 if x ≥ t

2

satisfies Rankine-Hugoniot condition and thus is a weak solution of (4.3). However, u
is not a weak solution of (4.23) since it does not satisfies Rankine-Hugoniot condition
at 0 and 1, i.e.,

q(1)− q(0) =
3

4
6= 1

2
=

1

2
· (η(1)− η(0)).

Entropy admissible solution. Let uε be the smooth solution of (4.21). It is easy
to see that uε is also a solution of the following equation

[η(uε)]t + [q(uε)]x = ε ·
(
[η(uε)]xx − η′′(uε) · [uεx]2

)
.

In particular, if η is convex and smooth then one has that

[η(uε)]t + [q(uε)]x ≤ ε · η(uε)]xx

Thus, for every non-negative test functions ϕ ∈ C1
c , it holds∫ ∫

Ω

[η(uε)ϕt + q(uε)ϕx] dtdx ≥ − ε
∫ ∫

Ω

η(uε)ϕxxdtdx.

If uε converges to u in L1
loc then by taking ε to 0+, we get∫ ∫

Ω

[η(u)ϕt + q(u)ϕx] dtdx ≥ 0. (4.24)

This yields the following entropy admissible condition.
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Definition 4.12 A weak solution u of (4.3) is entropy admissible if it satisfies the
inequality

[η(u)]t + [q(u)]x ≤ 0

in the distributional senses for every pair of convex entropy-entropy flux (η, q), i.e.
(4.24) holds for every non-negative test functions ϕ ∈ C1

c .

A particular class of entropy-entropy flux pairs which is quite useful in analyzing the
behavior of entropy admissible weak solutions is given by the Kruzkhov’s entropy:
for each k ∈ R, consider the functions

ηk(u) = |u− k|, qk(u) = sign(u− k) · (f(u)− f(k)).

It is easy to check that (ηk(u), qk(u)) is locally Lipschitz and satisfies (4.22) for every
u 6= k.

Proposition 4.12.1 A function u ∈ L∞(]0, T [×R) is an entropy admissible weak
solution of (4.3) iff for every k ∈ R it holds∫ ∫

]0,T [×R
[ηk(u)ϕt + qk(u)ϕx] dtdx ≥ 0. (4.25)

for all ϕ ∈ C1
c (]0, T [×R, [0,+∞[).

Sketch of proof. The proof is divided into several steps:

1. We show that if a function u ∈ L∞(]0, T [×R) satisfies (4.25) for every k ∈ R
then u is a weak solution of (4.3). Set M = ‖u‖∞ + 1, we have that

ηM(u) = M − u and qM(u) = f(M)− f(u).

For every ϕ ∈ C1
c (]0, T [×R, [0,+∞[), we have∫ ∫

]0,T [×R
[ηM(u)ϕt + qM(u)ϕx] dtdx ≥ 0

and this implies that∫ ∫
]0,T [×R

[uϕt + f(u)ϕx] dtdx ≤
∫ ∫

]0,T [×R
[Mϕt + f(M).ϕx] dtdx = 0

Similarly, since ∫ ∫
]0,T [×R

[η−M(u)ϕt + q−M(u)ϕx] dtdx ≥ 0,

one has∫ ∫
]0,T [×R

[uϕt + f(u)ϕx] dtdx ≥ −
∫ ∫

]0,T [×R
[Mϕt + f(M).ϕx] dtdx = 0.
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Thus, for all ϕ ∈ C1
c (]0, T [×R, [0,+∞[), it holds∫ ∫

]0,T [×R
[uϕt + f(u)ϕx] dtdx = 0. (4.26)

2. By an approximation argument, one can show that (4.26) also holds for all
ϕ ∈ Lipc(]0, T [×R, [0,+∞[). Therefore, for a general ϕ ∈ C1

c (]0, T [×R,R), it holds

ϕ = ϕ+ − ϕ− with ϕ± =
|ϕ| ± ϕ

2
∈ Lipc(]0, T [×R, [0,+∞[).

Since (4.26) holds for both ϕ+ and ϕ−, one then has that (4.26) holds for ϕ.

3. To conclude the proof, we show that (4.24) is satisfied for every pair of convex
entropy-entropy flux (η, q). It is divided in two main steps:

• Show that (4.24) every pair of convex entropy-entropy flux (η, q) where η is
convex piecewise affine entropy of the form

η(u) = a0 + aiu+ ci

N∑
i=1

|u− ki|+ u− ki
2

(4.27)

for a0, a1 ∈ R and ci > 0.

• For every pair of convex entropy-entropy flux (η, q), one can approximate
uniformly (outside a set of measure zero) by a sequence of pair of convex
entropy-entropy flux (ηn, qn) with ηn talking the form (4.27).

Stability conditions. We wish to derive simple geometric conditions that can ob-
tained purely from stability considerations, without any reference to physical models.
Let us recall

U(t, x) =

{
u+ if x > λ · t
u− if x < λ · t.

a weak solution of (4.3), i.e.,

λ =
f(u+)− f(u−)

u+ − u−
.

Consider a slightly perturbed solution where the original shock joining two states u±

is split into two separated smaller shocks that join u+ and u− with an intermediate
state uα = αu+ + (1 − α)u+ for some α ∈]0, 1[. To ensure that the L1-distance
between the original solution and the perturbed one does not increase in time, we
need the following:

[speed of jump behind] ≥ [speed of jump ahead]
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By Rankine-Hugoniot condition, one has

f(uα)− f(u−)

uα − u−
≥ f(u+)− f(uα)

u+ − uα
(4.28)

The above condition is equivalent to{
f(αu+ + (1− α)u−) ≥ αf(u+) + (1− α)f(u−) if u− < u+

f(αu+ + (1− α)u−) ≤ αf(u+) + (1− α)f(u−) if u− > u+
(4.29)

Proposition 4.12.2 The function U is an entropy admissible solution of (4.3) iff
(4.29) holds.

Sketch of the proof. 1. One can show that U is entropy admissible weak solution
of (4.3) if any only if

λ · (ηk(u+)− ηk(u−)) ≥ qk(u
+)− qk(u−) for all k ∈ R. (4.30)

Thus, to prove the proposition, we need to show that (4.30) is verified if and only if

λ(u+ − u−) = f(u+)− f(u−)

and (4.29) holds for all α ∈ (0, 1).

2. From the definition of (ηk, qk), we can be rewriten (4.30) as

λ
[
|u+ − k| − |u− − k|

]
≥
[
(f(u+)− f(k)) · sign(u+ − k)− (f(u−)− f(k)) · sign(u− − k)

]
. (4.31)

Observe that

• If k ≥ max{u+, u−} then (4.31) is equivalent to

λ · (u− − u+) ≥ f(u−)− f(u+).

• If k ≤ min{u+, u−} then (4.31) is equivalent to

λ · (u+ − u−) ≥ f(u+)− f(u−).

Thus, (4.31) is verified for all k ∈] −∞,min{u+, u−}]
⋃

[max{u+, u−},+∞[ if any
only if U satisfies the Rankine- Hugoniot condition.

3. To complete the proof, we need to show that (4.31) is verified for all k ∈
] min{u+, u−},max{u+, u−}[ if any only if (4.29) is satisfied. Without loss of gener-
ality, we will assume that u− < u+. For every k ∈]− u−, u+[,

λ · (u+ + u− − 2k) ≥ f(u+) + f(u−)− 2f(k)
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By Rankine-Hugoniot condition, the above inequality is equivalent to[
f(u+)− f(u−)

]
· (u+ + u− − 2k) ≥

[
f(u+) + f(u−)− 2f(k)

]
· (u+ − u−)

Writing k = αu+ + (1− α)u−, we have

(1−2α)
[
f(u+)−f(u−)

]
[u+−u−] ≥

[
f(u+)+f(u−)−2f(αu++(1−α)u−)

]
·(u+−u−)

and this implies that

f(αu+ + (1− α)u−) ≥ αf(u+) + (1− α)f(u−).

The proof is complete.

Rely on proposition 4.12.1 and the above proposition, one can show that

Theorem 4.13 Let u : [0, T [×R → R be piecewise Lipschitz. Then, the followings
are equivalent:

(i) u is entropy admissible weak solution.

(ii) u satisfies the quasilinear equation (4.19), and for every jump curve γj :
]aj, bj[→ R the (RH) condition holds, i.e.,

γ̇j(t) ·
[
u+
j (t)− u−j (t)

]
= f(u+

j (t))− f(u−j (t)),

together with the stability condition

f(uαj (t))− f(u−j (t))

uαj (t)− u−j (t)
≥

f(uαj (t))− f(u+
j (t))

uαj (t)− u+
j (t)

for all t ∈]aj, bj[

with uαj = αu+
j + (1− α)u−j .

Let us remark that if we take α go to 0+ and 1− in (4.28) then we obtain the
following condition

f ′(u−) ≥ f(u+)− f(u−)

u+ − u−
≥ f ′(u−) (4.32)

which can be seen as another type of admissible condition :

Definition 4.14 We say that a weak solution of (4.3) is admissible in the sense of
Lax if at every point (t̄, x̄) of approximate jump discontinuity with the left and right
states u−, u+, and speed λ, the Lax condition holds

f ′(u) ≥ λ =
f(u+)− f(u−)

u+ − u−
≥ f ′(u+). (4.33)
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In the case of convex flux f ′′(u) ≥ 0, the stability condition (4.29) and Lax condition
(4.33) are equivalent. Moreover, if f ′′(u) > 0 then the Lax condition is equivalent
to the condition:

u− > u+.

In the case of general flux, the Lax condition does not implies the stability condition.

Theorem 4.15 Let f : R → R be locally Lipschitz continuous. Then there exists
a continuous semigroup S : [0,+∞[×L1 → L1 such that for each ū ∈ L1

⋂
L∞, the

trajectory t 7→ St(ū) yields a unique bounded, entropy-admissible weak solution of
(4.3) with u(0, ·) = ū. Moreover, the following properties hold:

(i) S0(ū) = ū, Ss ◦ St(ū) = Ss+t(ū);

(ii) ‖St(ū)− St(v̄)‖L1 ≤ ‖ū− v̄‖L1;

(iii) If ū(x) ≤ v̄ for all x ∈ R then

St(ū)(x) ≤ St(v̄)(x) for all (t, x) ∈ [0,∞[×R.
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